Advanced Search
MyIDEAS: Login to save this paper or follow this series

A comparison of alternative approaches to sup-norm goodness of git gests with estimated parameters

Contents:

Author Info

  • Parker, Thomas

Abstract

Goodness of fit tests based on sup-norm statistics of empirical processes have nonstandard limit- ing distributions when the null hypothesis is composite — that is, when parameters of the null model are estimated. Several solutions to this problem have been suggested, including the calculation of adjusted critical values for these nonstandard distributions and the transformation of the empirical process such that statistics based on the transformed process are asymptotically distribution-free. The approximation methods proposed by Durbin (1985) can be applied to compute appropriate critical values for tests based on sup-norm statistics. The resulting tests have quite accurate size, a fact which has gone unrecognized in the econometrics literature. Some justification for this accuracy lies in the similar features that Durbin’s approximation methods share with the theory of extrema for Gaussian random fields and for Gauss-Markov processes. These adjustment techniques are also related to the transformation methodology proposed by Khmaladze (1981) through the score func- tion of the parametric model. Monte Carlo experiments suggest that these two testing strategies are roughly comparable to one another and more powerful than a simple bootstrap procedure.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://mpra.ub.uni-muenchen.de/22926/
File Function: original version
Download Restriction: no

File URL: http://mpra.ub.uni-muenchen.de/22961/
File Function: revised version
Download Restriction: no

File URL: http://mpra.ub.uni-muenchen.de/36345/
File Function: revised version
Download Restriction: no

Bibliographic Info

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 22926.

as in new window
Length:
Date of creation: 26 May 2010
Date of revision:
Handle: RePEc:pra:mprapa:22926

Contact details of provider:
Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de
More information through EDIRC

Related research

Keywords: Goodness of fit test; Estimated parameters; Gaussian process; Gauss-Markov process; Boundary crossing probability; Martingale transformation;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Delgado, Miguel A. & Stute, Winfried, 2008. "Distribution-free specification tests of conditional models," Journal of Econometrics, Elsevier, vol. 143(1), pages 37-55, March.
  2. Roger Koenker & Zhijie Xiao, 2002. "Inference on the Quantile Regression Process," Econometrica, Econometric Society, vol. 70(4), pages 1583-1612, July.
  3. Haywood, John & Khmaladze, Estate, 2008. "On distribution-free goodness-of-fit testing of exponentiality," Journal of Econometrics, Elsevier, vol. 143(1), pages 5-18, March.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:22926. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.