Advanced Search
MyIDEAS: Login

Forecasting and testing a non-constant volatility

Contents:

Author Info

  • Abramov, Vyacheslav
  • Klebaner, Fima

Abstract

In this paper we study volatility functions. Our main assumption is that the volatility is deterministic or stochastic but driven by a Brownian motion independent of the stock. We propose a forecasting method and check the consistency with option pricing theory. To estimate the unknown volatility function we use the approach of \cite{Goldentayer Klebaner and Liptser} based on filters for estimation of an unknown function from its noisy observations. One of the main assumptions is that the volatility is a continuous function, with derivative satisfying some smoothness conditions. The two forecasting methods correspond to the the first and second order filters, the first order filter tracks the unknown function and the second order tracks the function and it derivative. Therefore the quality of forecasting depends on the type of the volatility function: if oscillations of volatility around its average are frequent, then the first order filter seems to be appropriate, otherwise the second order filter is better. Further, in deterministic volatility models the price of options is given by the Black-Scholes formula with averaged future volatility \cite{Hull White 1987}, \cite{Stein and Stein 1991}. This enables us to compare the implied volatility with the averaged estimated historical volatility. This comparison is done for five companies and shows that the implied volatility and the historical volatilities are not statistically related.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://mpra.ub.uni-muenchen.de/207/
File Function: original version
Download Restriction: no

Bibliographic Info

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 207.

as in new window
Length:
Date of creation: 06 Jun 2006
Date of revision:
Handle: RePEc:pra:mprapa:207

Contact details of provider:
Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de
More information through EDIRC

Related research

Keywords: Non-constant volatility; approximating and forecasting volatility; Black-Scholes formula; best linear predictor;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Ole E. Barndorff-Nielsen & Neil Shephard, 2003. "Power and bipower variation with stochastic volatility and jumps," Economics Papers 2003-W17, Economics Group, Nuffield College, University of Oxford.
  2. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
  3. Neil Shephard, 2005. "Stochastic Volatility," Economics Papers 2005-W17, Economics Group, Nuffield College, University of Oxford.
  4. Anderson, Heather M. & Vahid, Farshid, 2007. "Forecasting the Volatility of Australian Stock Returns: Do Common Factors Help?," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 76-90, January.
  5. Ole E. Barndorff-Nielsen & Neil Shephard, 2002. "Estimating quadratic variation using realized variance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 457-477.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:207. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.