Advanced Search
MyIDEAS: Login

On behavioral Arrow Pratt risk process with applications to risk pricing, stochastic cash flows, and risk control

Contents:

Author Info

  • Cadogan, Godfrey

Abstract

We introduce a closed form behavioural stochastic Arrow-Pratt risk process, decomposed into discrete asymmetric risk seeking and risk averse components that run on different local times in ϵ-disks centered at risk free states. Additionally, we embed Arrow-Pratt (“AP”) risk measure in a simple dynamic system of discounted cash flows with constant volatility, and time varying drift. Signal extraction of Arrow-Pratt risk measure shows that it is highly nonlinear in constant volatility for cash flows. Robust identifying restrictions on the system solution confirm that even for small time periods constant volatility is not a measure of AP risk. By contrast, time-varying volatility measures aspects of embedded AP risk. Whereupon maximal AP risk measure is obtained from a convolution of input volatility and idiosyncratic shocks to the system. We provide four applications for our theory. First, we find that Engle, Ng and Rothschild (1990) Factor-ARCH model for risk premia is misspecified because the factor price of risk is time varying and unstable. Our theory predicts that a hyper-ARCH correction factor is required to remove the Factor-ARCH specification. Second, when applied to analysts beliefs about interest rates and volatility, we find that AP risk measure is a feedback control over stochastic cash flows. Whereupon increased risk aversion to negative shocks to earnings increases volatility. Third, we use an oft cited example of Benes, Shepp and Witsenhausen (1980) to characterize a controlled AP diffusion for a conservative investor who wants to minimize the AP risk process for an asset. Fourth, we recover stochastic differential utility functional from the AP risk process and show how it is functionally equivalent to Duffie and Epstein’s (1992) parametrization.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://mpra.ub.uni-muenchen.de/20174/
File Function: original version
Download Restriction: no

Bibliographic Info

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 20174.

as in new window
Length:
Date of creation: 31 Dec 2009
Date of revision:
Handle: RePEc:pra:mprapa:20174

Contact details of provider:
Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de
More information through EDIRC

Related research

Keywords: behavioural Arrow-Pratt risk process; asymmetric risk decomposition; asset pricing; Markov process; local martingale; local time change;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Carlo Acerbi, 2001. "Risk Aversion and Coherent Risk Measures: a Spectral Representation Theorem," Papers cond-mat/0107190, arXiv.org.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:20174. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.