Advanced Search
MyIDEAS: Login

On the Computation of the Hausdorff Dimension of the Walrasian Economy: Addendum

Contents:

Author Info

  • Dominique, C-Rene

Abstract

In a recent paper, Dominique (2009) argues that for a Walrasian economy with m consumers and n goods, the equilibrium set of prices becomes a fractal attractor due to continuous destructions and creations of excess demands. The paper also posits that the Hausdorff dimension of the attractor is d = ln (n) / ln (n-1) if there are n copies of sizes (1/ (n-1)), but that assumption does not hold. A subsequent paper (no 16723) modified that assumption, dealt with the self-similarity of the Walrasian economy, and computed the Hausdorff dimensions of the attractor as if it were a space-filling curve. This paper is an extension of the first two. It shows that the path of the equilibrium price vector within the attractor is rather as close as one can get to a Brownian motion that tends to fill up the whole hyperspace available to it. The end analysis is that the economy obeys a homogeneous power law in the form of f-. Power Spectra and Hausdorff dimensions are then computed for both the attractor and economic time series.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://mpra.ub.uni-muenchen.de/18292/
File Function: original version
Download Restriction: no

Bibliographic Info

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 18292.

as in new window
Length:
Date of creation: 01 Nov 2009
Date of revision:
Handle: RePEc:pra:mprapa:18292

Contact details of provider:
Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de
More information through EDIRC

Related research

Keywords: Fractal Attractor; Contractive Mappings; Self-similarity; Hausdorff Dimensions of the Walrasian Economy and time series; Brownian Motion; Power Spectra; Hausdorff Dimensions in Higher Dimensions.;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Dominique, C-Rene, 2008. "Walrasian Solutions Without Utility Functions," MPRA Paper 8906, University Library of Munich, Germany, revised 2008.
  2. Dominique, C-Rene, 2009. "Could Markets' Equilibrium Sets Be Fractal Attractors?," MPRA Paper 13624, University Library of Munich, Germany.
  3. Herbert E. Scarf, 1959. "Some Examples of Global Instability of the Competitive Equilibrium," Cowles Foundation Discussion Papers 79, Cowles Foundation for Research in Economics, Yale University.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:18292. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.