Advanced Search
MyIDEAS: Login

Modelling financial time series with SEMIFAR-GARCH model

Contents:

Author Info

  • Feng, Yuanhua
  • Beran, Jan
  • Yu, Keming

Abstract

A class of semiparametric fractional autoregressive GARCH models (SEMIFAR-GARCH), which includes deterministic trends, difference stationarity and stationarity with short- and long-range dependence, and heteroskedastic model errors, is very powerful for modelling financial time series. This paper discusses the model fitting, including an efficient algorithm and parameter estimation of GARCH error term. So that the model can be applied in practice. We then illustrate the model and estimation methods with a few of different finance data sets.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://mpra.ub.uni-muenchen.de/1593/
File Function: original version
Download Restriction: no

Bibliographic Info

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 1593.

as in new window
Length:
Date of creation: 2006
Date of revision:
Handle: RePEc:pra:mprapa:1593

Contact details of provider:
Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de
More information through EDIRC

Related research

Keywords: Financial time series; GARCH model; SEMIFAR model; parameter estimation; kernel estimation; asymptotic property;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Hosking, Jonathan R. M., 1996. "Asymptotic distributions of the sample mean, autocovariances, and autocorrelations of long-memory time series," Journal of Econometrics, Elsevier, vol. 73(1), pages 261-284, July.
  2. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  3. Engle, Robert F & Lilien, David M & Robins, Russell P, 1987. "Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model," Econometrica, Econometric Society, vol. 55(2), pages 391-407, March.
  4. He, Changli & Ter svirta, Timo, 1999. "FOURTH MOMENT STRUCTURE OF THE GARCH(p,q) PROCESS," Econometric Theory, Cambridge University Press, vol. 15(06), pages 824-846, December.
  5. Jan Beran & Yuanhua Feng, 1999. "Local Polynomial Estimation with a FARIMA-GARCH Error Process," CoFE Discussion Paper 99-08, Center of Finance and Econometrics, University of Konstanz.
  6. Liudas Giraitis & Remigijus Leipus & Peter M Robinson & Donatas Surgailis, 2003. "LARCH, Leverage and Long Memory," STICERD - Econometrics Paper Series /2003/460, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  7. Beran, Jan & Feng, Yuanhua, 2002. "SEMIFAR models--a semiparametric approach to modelling trends, long-range dependence and nonstationarity," Computational Statistics & Data Analysis, Elsevier, vol. 40(2), pages 393-419, August.
  8. Robinson, P. M., 1991. "Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression," Journal of Econometrics, Elsevier, vol. 47(1), pages 67-84, January.
  9. Jan Beran & Yuanhua.Feng, 2001. "Iterative plug-in algorithms for SEMIFAR models - definition, convergence and asymptotic properties," CoFE Discussion Paper 01-11, Center of Finance and Econometrics, University of Konstanz.
  10. Ling, Shiqing & McAleer, Michael, 2002. "NECESSARY AND SUFFICIENT MOMENT CONDITIONS FOR THE GARCH(r,s) AND ASYMMETRIC POWER GARCH(r,s) MODELS," Econometric Theory, Cambridge University Press, vol. 18(03), pages 722-729, June.
  11. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. C.S. Bos & S.J. Koopman & M. Ooms, 2007. "Long Memory Modelling of Inflation with Stochastic Variance and Structural Breaks," Tinbergen Institute Discussion Papers 07-099/4, Tinbergen Institute.
  2. Mohamed Chikhi & Anne Peguin-Feissolle & Michel Terraza, 2012. "SEMIFARMA-HYGARCH Modeling of Dow Jones Return Persistence," Working Papers halshs-00793203, HAL.
  3. Yuanhua Feng & Jan Beran, 2007. "Optimal Convergence Rates in Nonparametric Regression with Fractional Time Series Errors," CoFE Discussion Paper 07-15, Center of Finance and Econometrics, University of Konstanz.
  4. Bos, Charles S. & Koopman, Siem Jan & Ooms, Marius, 2014. "Long memory with stochastic variance model: A recursive analysis for US inflation," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 144-157.
  5. Heni Boubaker & Nadia Sghaier, 2014. "Semiparametric Generalized Long Memory Modelling of GCC Stock Market Returns: A Wavelet Approach," Working Papers 2014-066, Department of Research, Ipag Business School.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:1593. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.