Advanced Search
MyIDEAS: Login

Segmentation for path models and unobserved heterogeneity: The finite mixture partial least squares approach

Contents:

Author Info

  • Ringle, Christian M.

Abstract

Partial least squares-based path modeling with latent variables is a methodology that allows to estimate complex cause-effect relationships using empirical data. The assumption that the data is collected from a single homogeneous population is often unrealistic. Identification of different groups of consumers in connection with estimates in the inner path model constitutes a critical issue for applying the path modeling methodology to form effective marketing strategies. Sequential clustering strategies often fail to provide useful results for segment-specific partial least squares analyses. For that reason, the purpose of this paper is fourfold. First, it presents a finite mixture path modeling methodology for separating data based on the heterogeneity of estimates in the inner path model, as it is implemented in a software application for statistical computation. This new approach permits reliable identification of distinctive customer segments with their characteristic estimates for relationships of latent variables in the structural model. Second, it presents an application of the approach to two numerical examples, using experimental and empirical data, as a means of verifying the methodology's usefulness for multigroup path analyses in marketing research. Third, it analyses the advantages of finite mixture partial least squares to a sequential clustering strategy. Fourth, the initial application and critical review of the new segmentation technique for partial least squares path modeling allows us to unveil and discuss some of the technique's problematic aspects and to address significant areas of future research.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://mpra.ub.uni-muenchen.de/10734/
File Function: original version
Download Restriction: no

Bibliographic Info

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 10734.

as in new window
Length:
Date of creation: 2006
Date of revision:
Handle: RePEc:pra:mprapa:10734

Contact details of provider:
Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de
More information through EDIRC

Related research

Keywords: partial least squares; PLS; path modeling; segmentation; latent class; finite mixture; customer satisfaction; brand preference;

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Tenenhaus, Michel & Vinzi, Vincenzo Esposito & Chatelin, Yves-Marie & Lauro, Carlo, 2005. "PLS path modeling," Computational Statistics & Data Analysis, Elsevier, vol. 48(1), pages 159-205, January.
  2. Vikas Mittal & Eugene W. Anderson & Akin Sayrak & Pandu Tadikamalla, 2005. "Dual Emphasis and the Long-Term Financial Impact of Customer Satisfaction," Marketing Science, INFORMS, vol. 24(4), pages 544-555, August.
  3. Jarvis, Cheryl Burke & MacKenzie, Scott B & Podsakoff, Philip M, 2003. " A Critical Review of Construct Indicators and Measurement Model Misspecification in Marketing and Consumer Research," Journal of Consumer Research, University of Chicago Press, vol. 30(2), pages 199-218, September.
  4. Venkatram Ramaswamy & Wayne S. Desarbo & David J. Reibstein & William T. Robinson, 1993. "An Empirical Pooling Approach for Estimating Marketing Mix Elasticities with PIMS Data," Marketing Science, INFORMS, vol. 12(1), pages 103-124.
  5. Carsten Hahn & Michael D. Johnson & Andreas Herrmann & Frank Huber, 2002. "Capturing Customer Heterogeneity Using A Finite Mixture Pls Approach," Schmalenbach Business Review (sbr), LMU Munich School of Management, vol. 54(3), pages 243-269, July.
  6. Claes Fornell & Peter Lorange & Johan Roos, 1990. "The Cooperative Venture Formation Process: A Latent Variable Structural Modeling Approach," Management Science, INFORMS, vol. 36(10), pages 1246-1255, October.
  7. Viswanath Venkatesh & Ritu Agarwal, 2006. "Turning Visitors into Customers: A Usability-Centric Perspective on Purchase Behavior in Electronic Channels," Management Science, INFORMS, vol. 52(3), pages 367-382, March.
  8. Eugene W. Anderson & Mary W. Sullivan, 1993. "The Antecedents and Consequences of Customer Satisfaction for Firms," Marketing Science, INFORMS, vol. 12(2), pages 125-143.
  9. Sargeant, Adrian & Ford, John B. & West, Douglas C., 2006. "Perceptual determinants of nonprofit giving behavior," Journal of Business Research, Elsevier, vol. 59(2), pages 155-165, February.
  10. Claes Fornell & William T. Robinson & Birger Wernerfelt, 1985. "Consumption Experience and Sales Promotion Expenditure," Management Science, INFORMS, vol. 31(9), pages 1084-1105, September.
  11. McLachlan, Geoffrey J. & Krishnan, Thriyambakam & Ng, See Ket, 2004. "The EM Algorithm," Papers 2004,24, Humboldt-Universität Berlin, Center for Applied Statistics and Economics (CASE).
  12. Karl Jöreskog, 1978. "Structural analysis of covariance and correlation matrices," Psychometrika, Springer, vol. 43(4), pages 443-477, December.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Lockström, Martin & Lei, Liu, 2013. "Antecedents to supplier integration in China: A partial least squares analysis," International Journal of Production Economics, Elsevier, vol. 141(1), pages 295-306.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:10734. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.