IDEAS home Printed from https://ideas.repec.org/p/pad/wpaper/0133.html
   My bibliography  Save this paper

Variance Clustering Improved Dynamic Conditional Correlation MGARCH Estimators

Author

Listed:
  • Gian Piero Aielli

    (University of Padova)

  • Massimiliano Caporin

    (University of Padova)

Abstract

It is well-known that the estimated GARCH dynamics exhibit common patterns. Starting from this fact we extend the Dynamic Conditional Correlation (DCC) model by allowing for a cluster- ing structure of the univariate GARCH parameters. The model can be estimated in two steps, the first devoted to the clustering structure, and the second focusing on correlation parameters. Differently from the traditional two-step DCC estimation, we get large system feasibility of the joint estimation of the whole set of modelÕs parameters. We also present a new approach to the clustering of GARCH processes, which embeds the asymptotic properties of the univariate quasi-maximum-likelihood GARCH estimators into a Gaussian mixture clustering algorithm. Unlike other GARCH clustering techniques, our method logically leads to the selection of the optimal number of clusters.

Suggested Citation

  • Gian Piero Aielli & Massimiliano Caporin, 2011. "Variance Clustering Improved Dynamic Conditional Correlation MGARCH Estimators," "Marco Fanno" Working Papers 0133, Dipartimento di Scienze Economiche "Marco Fanno".
  • Handle: RePEc:pad:wpaper:0133
    as

    Download full text from publisher

    File URL: https://economia.unipd.it/sites/economia.unipd.it/files/20110133.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sébastien Laurent & Jeroen V. K. Rombouts & Francesco Violante, 2012. "On the forecasting accuracy of multivariate GARCH models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 934-955, September.
    2. Pesaran, Bahram & Pesaran, M. Hashem, 2007. "Modelling Volatilities and Conditional Correlations in Futures Markets with a Multivariate t Distribution," IZA Discussion Papers 2906, Institute of Labor Economics (IZA).
    3. repec:taf:jnlbes:v:30:y:2012:i:2:p:212-228 is not listed on IDEAS
    4. Lorenzo Cappiello & Robert F. Engle & Kevin Sheppard, 2006. "Asymmetric Dynamics in the Correlations of Global Equity and Bond Returns," Journal of Financial Econometrics, Oxford University Press, vol. 4(4), pages 537-572.
    5. Cavit Pakel & Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," Economics Papers 2009-W12, Economics Group, Nuffield College, University of Oxford.
    6. Massimiliano Caporin & Michael McAleer, 2012. "Do We Really Need Both Bekk And Dcc? A Tale Of Two Multivariate Garch Models," Journal of Economic Surveys, Wiley Blackwell, vol. 26(4), pages 736-751, September.
    7. Amisano, Gianni & Giacomini, Raffaella, 2007. "Comparing Density Forecasts via Weighted Likelihood Ratio Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 177-190, April.
    8. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    9. Laurent, Sébastien & Rombouts, Jeroen V.K. & Violante, Francesco, 2013. "On loss functions and ranking forecasting performances of multivariate volatility models," Journal of Econometrics, Elsevier, vol. 173(1), pages 1-10.
    10. Otranto, Edoardo, 2008. "Clustering heteroskedastic time series by model-based procedures," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4685-4698, June.
    11. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    12. M. Hashem Pesaran & Bahram Pesaran, 2007. "Volatilities and Conditional Correlations in Futures Markets with a Multivariate t Distribution," CESifo Working Paper Series 2056, CESifo.
    13. Robert F. Engle & Kevin Sheppard, 2001. "Theoretical and Empirical properties of Dynamic Conditional Correlation Multivariate GARCH," NBER Working Papers 8554, National Bureau of Economic Research, Inc.
    14. Otranto, Edoardo, 2010. "Identifying financial time series with similar dynamic conditional correlation," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 1-15, January.
    15. Hafner, Christian M. & Reznikova, Olga, 2012. "On the estimation of dynamic conditional correlation models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3533-3545.
    16. Engle, Robert F. & Ng, Victor K. & Rothschild, Michael, 1990. "Asset pricing with a factor-arch covariance structure : Empirical estimates for treasury bills," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 213-237.
    17. McAleer, Michael & Chan, Felix & Hoti, Suhejla & Lieberman, Offer, 2008. "Generalized Autoregressive Conditional Correlation," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1554-1583, December.
    18. L. Bauwens & J. V. K. Rombouts, 2007. "Bayesian Clustering of Many Garch Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 365-386.
    19. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    20. Christian Hafner & Philip Hans Franses, 2009. "A Generalized Dynamic Conditional Correlation Model: Simulation and Application to Many Assets," Econometric Reviews, Taylor & Francis Journals, vol. 28(6), pages 612-631.
    21. Billio, Monica & Caporin, Massimiliano, 2009. "A generalized Dynamic Conditional Correlation model for portfolio risk evaluation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2566-2578.
    22. Engle, Robert & Colacito, Riccardo, 2006. "Testing and Valuing Dynamic Correlations for Asset Allocation," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 238-253, April.
    23. Engle, Robert F. & Marcucci, Juri, 2006. "A long-run Pure Variance Common Features model for the common volatilities of the Dow Jones," Journal of Econometrics, Elsevier, vol. 132(1), pages 7-42, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bonato, Matteo & Caporin, Massimiliano & Ranaldo, Angelo, 2013. "Risk spillovers in international equity portfolios," Journal of Empirical Finance, Elsevier, vol. 24(C), pages 121-137.
    2. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
    3. Gian Piero Aielli & Massimiliano Caporin, 2015. "Dynamic Principal Components: a New Class of Multivariate GARCH Models," "Marco Fanno" Working Papers 0193, Dipartimento di Scienze Economiche "Marco Fanno".
    4. Leonardo Chaves Borges Cardoso & Maurício Vaz Lobo Bittencourt, 2016. "Price Volatility Transmission From Oil To Energy And Non-Energy Agricultural Commodities," Anais do XLII Encontro Nacional de Economia [Proceedings of the 42nd Brazilian Economics Meeting] 181, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    5. Fresoli, Diego E. & Ruiz, Esther, 2016. "The uncertainty of conditional returns, volatilities and correlations in DCC models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 170-185.
    6. Takashi Isogai, 2015. "An Empirical Study of the Dynamic Correlation of Japanese Stock Returns," Bank of Japan Working Paper Series 15-E-7, Bank of Japan.
    7. Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2019. "Regime switching dynamic correlations for asymmetric and fat-tailed conditional returns," Journal of Econometrics, Elsevier, vol. 213(2), pages 493-515.
    8. Aielli, Gian Piero & Caporin, Massimiliano, 2013. "Fast clustering of GARCH processes via Gaussian mixture models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 205-222.
    9. Roxana Halbleib & Valeri Voev, 2016. "Forecasting Covariance Matrices: A Mixed Approach," Journal of Financial Econometrics, Oxford University Press, vol. 14(2), pages 383-417.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
    2. Massimiliano Caporin & Michael McAleer, 2011. "Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation," Working Papers in Economics 11/23, University of Canterbury, Department of Economics and Finance.
    3. Massimiliano Caporin & Michael McAleer, 2010. "Ranking Multivariate GARCH Models by Problem Dimension," CARF F-Series CARF-F-219, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    4. Caporin, Massimiliano & McAleer, Michael, 2014. "Robust ranking of multivariate GARCH models by problem dimension," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 172-185.
    5. Gian Piero Aielli, 2011. "Dynamic Conditional Correlation: On properties and estimation," "Marco Fanno" Working Papers 0142, Dipartimento di Scienze Economiche "Marco Fanno".
    6. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. L. Bauwens & E. Otranto, 2020. "Modelling Realized Covariance Matrices: a Class of Hadamard Exponential Models," Working Paper CRENoS 202007, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    8. Noureldin, Diaa & Shephard, Neil & Sheppard, Kevin, 2014. "Multivariate rotated ARCH models," Journal of Econometrics, Elsevier, vol. 179(1), pages 16-30.
    9. João F. Caldeira & Guilherme V. Moura & Francisco J. Nogales & André A. P. Santos, 2017. "Combining Multivariate Volatility Forecasts: An Economic-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 15(2), pages 247-285.
    10. Bauwens, Luc & Grigoryeva, Lyudmila & Ortega, Juan-Pablo, 2016. "Estimation and empirical performance of non-scalar dynamic conditional correlation models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 17-36.
    11. Fresoli, Diego E. & Ruiz, Esther, 2016. "The uncertainty of conditional returns, volatilities and correlations in DCC models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 170-185.
    12. Geert Dhaene & Piet Sercu & Jianbin Wu, 2022. "Volatility spillovers: A sparse multivariate GARCH approach with an application to commodity markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(5), pages 868-887, May.
    13. Audrino, Francesco, 2014. "Forecasting correlations during the late-2000s financial crisis: The short-run component, the long-run component, and structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 43-60.
    14. Rombouts, Jeroen & Stentoft, Lars & Violante, Franceso, 2014. "The value of multivariate model sophistication: An application to pricing Dow Jones Industrial Average options," International Journal of Forecasting, Elsevier, vol. 30(1), pages 78-98.
    15. Gian Piero Aielli & Massimiliano Caporin, 2015. "Dynamic Principal Components: a New Class of Multivariate GARCH Models," "Marco Fanno" Working Papers 0193, Dipartimento di Scienze Economiche "Marco Fanno".
    16. Massimiliano Caporin & Michael McAleer, 2013. "Ten Things You Should Know about the Dynamic Conditional Correlation Representation," Econometrics, MDPI, vol. 1(1), pages 1-12, June.
    17. Nadine McCloud & Yongmiao Hong, 2011. "Testing The Structure Of Conditional Correlations In Multivariate Garch Models: A Generalized Cross‐Spectrum Approach," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(4), pages 991-1037, November.
    18. Otranto, Edoardo, 2010. "Identifying financial time series with similar dynamic conditional correlation," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 1-15, January.
    19. Noureldin, Diaa & Shephard, Neil & Sheppard, Kevin, 2014. "Multivariate rotated ARCH models," Scholarly Articles 34650305, Harvard University Department of Economics.
    20. André A. P. Santos & Francisco J. Nogales & Esther Ruiz, 2013. "Comparing Univariate and Multivariate Models to Forecast Portfolio Value-at-Risk," Journal of Financial Econometrics, Oxford University Press, vol. 11(2), pages 400-441, March.

    More about this item

    Keywords

    dynamic conditional correlations; time series clustering; multivariate GARCH; composite likelihood.;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pad:wpaper:0133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Raffaele Dei Campielisi (email available below). General contact details of provider: https://edirc.repec.org/data/dspadit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.