IDEAS home Printed from https://ideas.repec.org/p/oxf/wpaper/554.html
   My bibliography  Save this paper

Depletion and development: natural resource supply with endogenous field opening

Author

Listed:
  • Anthony J. Venables

Abstract

This paper develops a model in which supply of a non-renewable resource can adjust through two margins: the rate of depletion and the rate of field opening. Faster depletion of existing fields means that less of the resource can ultimately be extracted, and optimal depletion of open fields follows a (modified) Hotelling rule. Opening a new field involves sinking a capital cost, and the timing of field opening is chosen to maximize the present value of the field. Output dynamics depend on both depletion and field opening, and supply responses to price changes are studied. In contrast to Hotelling, the long run equilibrium rate of growth of prices is independent of the rate of intereset, depending instead on characteristics of demand and geologically determined supply.

Suggested Citation

  • Anthony J. Venables, 2011. "Depletion and development: natural resource supply with endogenous field opening," Economics Series Working Papers 554, University of Oxford, Department of Economics.
  • Handle: RePEc:oxf:wpaper:554
    as

    Download full text from publisher

    File URL: https://ora.ox.ac.uk/objects/uuid:bc9b1c8f-10d0-4c1c-b721-7e47b2e982c0
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fischer, Carolyn & Laxminarayan, Ramanan, 2005. "Sequential development and exploitation of an exhaustible resource: do monopoly rights promote conservation?," Journal of Environmental Economics and Management, Elsevier, vol. 49(3), pages 500-515, May.
    2. Nystad, Arild N., 1985. "Petroleum taxes and optimal resource recovery," Energy Policy, Elsevier, vol. 13(4), pages 381-401, August.
    3. Lewis, Tracy R, 1982. "Sufficient Conditions for Extracting Least Cost Resource First," Econometrica, Econometric Society, vol. 50(4), pages 1081-1083, July.
    4. Ujjayant Chakravorty & Michel Moreaux & Mabel Tidball, 2008. "Ordering the Extraction of Polluting Nonrenewable Resources," American Economic Review, American Economic Association, vol. 98(3), pages 1128-1144, June.
    5. Adelman, M A, 1990. "Mineral Depletion, with Special Reference to Petroleum," The Review of Economics and Statistics, MIT Press, vol. 72(1), pages 1-10, February.
    6. Gérard Gaudet, 2007. "Natural resource economics under the rule of Hotelling," Canadian Journal of Economics, Canadian Economics Association, vol. 40(4), pages 1033-1059, November.
    7. Graham A. Davis, 2007. "Strike When the Force Is with You: Optimal Stopping with Application to Resource Equilibria," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 89(2), pages 461-472.
    8. Hans-Werner Sinn, 2008. "Public policies against global warming: a supply side approach," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 15(4), pages 360-394, August.
    9. Pindyck, Robert S, 1978. "The Optimal Exploration and Production of Nonrenewable Resources," Journal of Political Economy, University of Chicago Press, vol. 86(5), pages 841-861, October.
    10. Hartwick, John M. & Kemp, Murray C. & Van Long, Ngo, 1986. "Set-up costs and theory of exhaustible resources," Journal of Environmental Economics and Management, Elsevier, vol. 13(3), pages 212-224, September.
    11. Miller, Merton H & Upton, Charles W, 1985. "A Test of the Hotelling Valuation Principle," Journal of Political Economy, University of Chicago Press, vol. 93(1), pages 1-25, February.
    12. Holland, Stephen P., 2003. "Set-up costs and the existence of competitive equilibrium when extraction capacity is limited," Journal of Environmental Economics and Management, Elsevier, vol. 46(3), pages 539-556, November.
    13. Chermak, Janie M. & Patrick, Robert H., 2002. "Comparing tests of the theory of exhaustible resources," Resource and Energy Economics, Elsevier, vol. 24(4), pages 301-325, November.
    14. Swierzbinski, Joseph E & Mendelsohn, Robert, 1989. "Exploration and Exhaustible Resources: The Microfoundations of Aggregate Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 30(1), pages 175-186, February.
    15. Amigues, Jean-Pierre & Favard, Pascal & Gaudet, Gerard & Moreaux, Michel, 1998. "On the Optimal Order of Natural Resource Use When the Capacity of the Inexhaustible Substitute Is Limited," Journal of Economic Theory, Elsevier, vol. 80(1), pages 153-170, May.
    16. Hans-Werner Sinn, 2007. "Public Policies against Global Warming," NBER Working Papers 13454, National Bureau of Economic Research, Inc.
    17. James L. Smith, 2009. "World Oil: Market or Mayhem?," Journal of Economic Perspectives, American Economic Association, vol. 23(3), pages 145-164, Summer.
    18. Harold Hotelling, 1931. "The Economics of Exhaustible Resources," Journal of Political Economy, University of Chicago Press, vol. 39, pages 137-137.
    19. Livernois, John R & Uhler, Russell S, 1987. "Extraction Costs and the Economics of Nonrenewable Resources," Journal of Political Economy, University of Chicago Press, vol. 95(1), pages 195-203, February.
    20. Ciarns, Robert D & Lasserre, Pierre, 1986. " Sectoral Supply of Minerals of Varying Quality," Scandinavian Journal of Economics, Wiley Blackwell, vol. 88(4), pages 605-626.
    21. Harry F. Campbell, 1980. "The Effect of Capital Intensity on the Optimal Rate of Extraction of a Mineral Deposit," Canadian Journal of Economics, Canadian Economics Association, vol. 13(2), pages 349-356, May.
    22. Nystad, Arild N., 1987. "Rate sensitivity and the optimal choice of production capacity of petroleum reservoirs," Energy Economics, Elsevier, vol. 9(1), pages 37-45, January.
    23. Jeffrey A. Krautkraemer, 1998. "Nonrenewable Resource Scarcity," Journal of Economic Literature, American Economic Association, vol. 36(4), pages 2065-2107, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Okullo, Samuel J. & Reynès, Frédéric & Hofkes, Marjan W., 2015. "Modeling peak oil and the geological constraints on oil production," Resource and Energy Economics, Elsevier, vol. 40(C), pages 36-56.
    2. Cairns, Robert D., 2014. "The green paradox of the economics of exhaustible resources," Energy Policy, Elsevier, vol. 65(C), pages 78-85.
    3. Julien Daubanes & Pierre Lasserre, 2019. "The supply of non-renewable resources," Canadian Journal of Economics, Canadian Economics Association, vol. 52(3), pages 1084-1111, August.
    4. Toman, Michael & Krautkraemer, Jeffrey, 2003. "Fundamental Economics of Depletable Energy Supply," RFF Working Paper Series dp-03-01, Resources for the Future.
    5. Soren T. Anderson & Ryan Kellogg & Stephen W. Salant, 2018. "Hotelling under Pressure," Journal of Political Economy, University of Chicago Press, vol. 126(3), pages 984-1026.
    6. Andrade de Sá, Saraly & Daubanes, Julien, 2016. "Limit pricing and the (in)effectiveness of the carbon tax," Journal of Public Economics, Elsevier, vol. 139(C), pages 28-39.
    7. Jeffrey A. Krautkraemer, 1998. "Nonrenewable Resource Scarcity," Journal of Economic Literature, American Economic Association, vol. 36(4), pages 2065-2107, December.
    8. Jean-Pierre Amigues & Michel Moreaux & Nguyen Manh-Hung, 2019. "The Fossil Energy Interlude: Optimal Building, Maintaining and Scraping a Dedicated Capital, and the Hotelling Rule," Working Papers 2019.07, FAERE - French Association of Environmental and Resource Economists.
    9. Julien Daubanes & Pierre Lasserre, 2014. "Dispatching after Producing: The Supply of Non-Renewable Resources," CIRANO Working Papers 2014s-42, CIRANO.
    10. Meier, Felix D. & Quaas, Martin F., 2021. "Booming gas – A theory of endogenous technological change in resource extraction," Journal of Environmental Economics and Management, Elsevier, vol. 107(C).
    11. Coulomb, Renaud & Henriet, Fanny, 2018. "The Grey Paradox: How fossil-fuel owners can benefit from carbon taxation," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 206-223.
    12. van den Bijgaart, Inge & Rodriguez, Mauricio, 2023. "Closing wells: Fossil development and abandonment in the energy transition," Resource and Energy Economics, Elsevier, vol. 74(C).
    13. Renaud Coulomb & Oskar Lecuyer & Adrien Vogt-Schilb, 2019. "Optimal Transition from Coal to Gas and Renewable Power Under Capacity Constraints and Adjustment Costs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 557-590, June.
    14. Davis, Graham A. & Moore, David J., 1998. "Valuing mineral reserves when capacity constrains production," Economics Letters, Elsevier, vol. 60(1), pages 121-125, July.
    15. Amigues, Jean-Pierre & Kama, Alain Ayong Le & Moreaux, Michel, 2015. "Equilibrium transitions from non-renewable energy to renewable energy under capacity constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 55(C), pages 89-112.
    16. Johannes Pfeiffer, 2017. "Fossil Resources and Climate Change – The Green Paradox and Resource Market Power Revisited in General Equilibrium," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 77.
    17. Robert D. Cairns and Graham A. Davis, 2015. "Mineral Depletion and the Rules of Resource Dynamics," The Energy Journal, International Association for Energy Economics, vol. 0(Adelman S).
    18. Gérard Gaudet, 2007. "Natural resource economics under the rule of Hotelling," Canadian Journal of Economics, Canadian Economics Association, vol. 40(4), pages 1033-1059, November.
    19. Vicknair, David & Tansey, Michael & O'Brien, Thomas E., 2022. "Measuring fossil fuel reserves: A simulation and review of the U.S. Securities and Exchange Commission approach," Resources Policy, Elsevier, vol. 79(C).
    20. Lafforgue, Gilles & Magné, Bertrand & Moreaux, Michel, 2008. "Energy substitutions, climate change and carbon sinks," Ecological Economics, Elsevier, vol. 67(4), pages 589-597, November.

    More about this item

    Keywords

    Natural resource; Depletion; Hotelling; Fossil fuel; Carbon tax;
    All these keywords.

    JEL classification:

    • Q3 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oxf:wpaper:554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anne Pouliquen (email available below). General contact details of provider: https://edirc.repec.org/data/sfeixuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.