IDEAS home Printed from https://ideas.repec.org/p/osf/socarx/h2g6r.html
   My bibliography  Save this paper

Modeling impacts of faster productivity growth to inform the CGIAR initiative on Crops to End Hunger

Author

Listed:
  • Wiebe, Keith
  • Sulser, Timothy B
  • Dunston, Shahnila
  • Rosegrant, Mark W.
  • Fuglie, Keith
  • Willenbockel, Dirk
  • Nelson, Gerald C.

Abstract

In 2017-2018, a group of international development funding agencies launched the Crops to End Hunger initiative to modernize public plant breeding in lower-income countries. To inform that initiative, USAID asked the International Food Policy Research Institute and the United States Department of Agriculture’s Economic Research Service to estimate the impacts of faster productivity growth for 20 food crops on income and other indicators in 106 countries in developing regions in 2030. We first estimated the value of production in 2015 for each crop using data from FAO. We then used the IMPACT and GLOBE economic models to estimate changes in the value of production and changes in economy-wide income under scenarios of faster crop productivity growth, assuming that increased investment will raise annual rates of yield growth by 25% above baseline growth rates over the period 2015-2030. We found that faster productivity growth in rice, wheat and maize increased economy-wide income in the selected countries in 2030 by 59 billion USD, 27 billion USD and 21 billion USD respectively, followed by banana and yams with increases of 9 billion USD each. While these amounts represent small shares of total GDP, they are 2-15 times current public R&D spending on food crops in developing countries. Income increased most in South Asia and Sub-Saharan Africa. Faster productivity growth in rice and wheat reduced the population at risk of hunger by 11 million people and 6 million people respectively, followed by plantain and cassava with reductions of about 2 million people each. Changes in adequacy ratios were relatively large for carbohydrates (already in surplus) and relatively small for micronutrients. In general, we found that impacts of faster productivity growth vary widely across crops, regions and outcome indicators, highlighting the importance of identifying the potentially diverse objectives of different decision makers and recognizing possible tradeoffs between objectives.

Suggested Citation

  • Wiebe, Keith & Sulser, Timothy B & Dunston, Shahnila & Rosegrant, Mark W. & Fuglie, Keith & Willenbockel, Dirk & Nelson, Gerald C., 2020. "Modeling impacts of faster productivity growth to inform the CGIAR initiative on Crops to End Hunger," SocArXiv h2g6r, Center for Open Science.
  • Handle: RePEc:osf:socarx:h2g6r
    DOI: 10.31219/osf.io/h2g6r
    as

    Download full text from publisher

    File URL: https://osf.io/download/5e7e6424ec7801002b9cfe7b/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/h2g6r?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Angel Aguiar & Badri Narayanan & Robert McDougall, 2016. "An Overview of the GTAP 9 Data Base," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 1(1), pages 181-208, June.
    2. Foster, James & Greer, Joel & Thorbecke, Erik, 1984. "A Class of Decomposable Poverty Measures," Econometrica, Econometric Society, vol. 52(3), pages 761-766, May.
    3. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    4. Mason-D'Croz, Daniel & Sulser, Timothy B. & Wiebe, Keith & Rosegrant, Mark W. & Lowder, Sarah K. & Nin-Pratt, Alejandro & Willenbockel, Dirk & Robinson, Sherman & Zhu, Tingju & Cenacchi, Nicola & Duns, 2019. "Agricultural investments and hunger in Africa modeling potential contributions to SDG2 – Zero Hunger," World Development, Elsevier, vol. 116(C), pages 38-53.
    5. A. J. Challinor & J. Watson & D. B. Lobell & S. M. Howden & D. R. Smith & N. Chhetri, 2014. "A meta-analysis of crop yield under climate change and adaptation," Nature Climate Change, Nature, vol. 4(4), pages 287-291, April.
    6. Richard H. Moss & Jae A. Edmonds & Kathy A. Hibbard & Martin R. Manning & Steven K. Rose & Detlef P. van Vuuren & Timothy R. Carter & Seita Emori & Mikiko Kainuma & Tom Kram & Gerald A. Meehl & John F, 2010. "The next generation of scenarios for climate change research and assessment," Nature, Nature, vol. 463(7282), pages 747-756, February.
    7. Martin Lampe & Dirk Willenbockel & Helal Ahammad & Elodie Blanc & Yongxia Cai & Katherine Calvin & Shinichiro Fujimori & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe & Page Kyle & Hermann Lotze-Campe, 2014. "Why do global long-term scenarios for agriculture differ? An overview of the AgMIP Global Economic Model Intercomparison," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 3-20, January.
    8. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    9. Hugo Valin & Ronald D. Sands & Dominique van der Mensbrugghe & Gerald C. Nelson & Helal Ahammad & Elodie Blanc & Benjamin Bodirsky & Shinichiro Fujimori & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe, 2014. "The future of food demand: understanding differences in global economic models," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 51-67, January.
    10. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pemsl, Diemuth E. & Staver, Charles & Hareau, Guy & Alene, Arega D. & Abdoulaye, Tahirou & Kleinwechter, Ulrich & Labarta, Ricardo & Thiele, Graham, 2022. "Prioritizing international agricultural research investments: lessons from a global multi-crop assessment," Research Policy, Elsevier, vol. 51(4).
    2. CGIAR Research Program on Policies, Institutions, and Markets (PIM), 2021. "Technological innovation and sustainable intensification: Highlights, lessons learned, and priorities for One CGIAR," PIM flagship insights 1, International Food Policy Research Institute (IFPRI).
    3. Facheng Ye & G R Shi & Maria Aleksandra Bitner, 2021. "Global biogeography of living brachiopods: Bioregionalization patterns and possible controls," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-35, November.
    4. Prager, Steven D. & Wiebe, Keith D., 2022. "Strategic foresight in One CGIAR: Gaps and needs in approaches and capacity," Other briefs January 2022, International Food Policy Research Institute (IFPRI).
    5. Christian Bux & Mariarosaria Lombardi & Erica Varese & Vera Amicarelli, 2022. "Economic and Environmental Assessment of Conventional versus Organic Durum Wheat Production in Southern Italy," Sustainability, MDPI, vol. 14(15), pages 1-14, July.
    6. Fuglie, Keith O. & Wiebe, Keith D. & Prager, Steven D. & Sulser, Timothy B. & Cenacchi, Nicola & Bonilla Cedrez, Camila & Willenbockel, Dirk, 2022. "Quantitative analysis to inform priorities for international agricultural research," IFPRI discussion papers 2133, International Food Policy Research Institute (IFPRI).
    7. Kruseman, Gideon, 2022. "Understanding the regional landscape and contributions of crops to end hunger in the Global South: Towards a parsimonious foundation," SocArXiv ybgsm, Center for Open Science.
    8. Prager, Steven & Wiebe, Keith, 2021. "Strategic Foresight in the One CGIAR: Gaps and Needs in Approaches and Capacity," SocArXiv 7kfxv, Center for Open Science.
    9. Chan, Chin Yee & Prager, Steven & Balie, Jean & Kozicka, Marta & Hareau, Guy & Valera, Harold Glenn & Tran, Nhuong & Wiebe, Keith & Diagne, Mandiaye & Alene, Arega, 2021. "The Future of Food Security, Nutrition and Health for Agri-food Systems Transformation," SocArXiv qgn9u, Center for Open Science.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jerome Dumortier & Miguel Carriquiry & Amani Elobeid, 2021. "Impact of climate change on global agricultural markets under different shared socioeconomic pathways," Agricultural Economics, International Association of Agricultural Economists, vol. 52(6), pages 963-984, November.
    2. Magalhães Filho, L.N.L. & Roebeling, P.C. & Costa, L.F.C. & de Lima, L.T., 2022. "Ecosystem services values at risk in the Atlantic coastal zone due to sea-level rise and socioeconomic development," Ecosystem Services, Elsevier, vol. 58(C).
    3. Miftakhova, Alena & Judd, Kenneth L. & Lontzek, Thomas S. & Schmedders, Karl, 2020. "Statistical approximation of high-dimensional climate models," Journal of Econometrics, Elsevier, vol. 214(1), pages 67-80.
    4. Thomas W. Hertel & Uris Lantz C. Baldos & Dominique van der Mensbrugghe, 2016. "Predicting Long-Term Food Demand, Cropland Use, and Prices," Annual Review of Resource Economics, Annual Reviews, vol. 8(1), pages 417-441, October.
    5. Angel Manuel Benitez Rodriguez & Ian Michael Trotter, 2019. "Climate change scenarios for Paraguayan power demand 2017–2050," Climatic Change, Springer, vol. 156(3), pages 425-445, October.
    6. Grundy, Michael J. & Bryan, Brett A. & Nolan, Martin & Battaglia, Michael & Hatfield-Dodds, Steve & Connor, Jeffery D. & Keating, Brian A., 2016. "Scenarios for Australian agricultural production and land use to 2050," Agricultural Systems, Elsevier, vol. 142(C), pages 70-83.
    7. Hans van Meijl & Petr Havlik & Hermann Lotze-Campen & Elke Stehfest & Peter Witzke & Ignacio Perez Dominguez & Benjamin Bodirsky & Michiel van Dijk & Jonathan Doelman & Thomas Fellmann & Florian Humpe, 2017. "Challenges of Global Agriculture in a Climate Change Context by 2050 (AgCLIM50)," JRC Research Reports JRC106835, Joint Research Centre.
    8. Calzadilla, Alvaro & Carr, Tony, 2020. "Land degradation and food security: impacts and adaptation options," Conference papers 333148, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    9. van der Mensbrugghe, Dominique & Jeffrey C. Peters, 2020. "Volume Preserving CES and CET Formulations," GTAP Working Papers 6160, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    10. Mason-D'Croz, Daniel & Sulser, Timothy B. & Wiebe, Keith & Rosegrant, Mark W. & Lowder, Sarah K. & Nin-Pratt, Alejandro & Willenbockel, Dirk & Robinson, Sherman & Zhu, Tingju & Cenacchi, Nicola & Duns, 2019. "Agricultural investments and hunger in Africa modeling potential contributions to SDG2 – Zero Hunger," World Development, Elsevier, vol. 116(C), pages 38-53.
    11. O'Neill, Brian, 2016. "The Shared Socioeconomic Pathways (SSPs) and their extension and use in impact, adaptation and vulnerability studies," Conference papers 332808, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    12. Matsumoto, Ken׳ichi & Andriosopoulos, Kostas, 2016. "Energy security in East Asia under climate mitigation scenarios in the 21st century," Omega, Elsevier, vol. 59(PA), pages 60-71.
    13. Phoebe Koundouri & Georgios I. Papayiannis & Achilleas Vassilopoulos & Athanasios N. Yannacopoulos, 2023. "Probabilistic Scenario-Based Assessment of National Food Security Risks with Application to Egypt and Ethiopia," Papers 2312.04428, arXiv.org, revised Dec 2023.
    14. Gabriel Bachner & Daniel Lincke & Jochen Hinkel, 2022. "The macroeconomic effects of adapting to high-end sea-level rise via protection and migration," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Vanessa J. Schweizer, 2020. "Reflections on cross-impact balances, a systematic method constructing global socio-technical scenarios for climate change research," Climatic Change, Springer, vol. 162(4), pages 1705-1722, October.
    16. Matthias Kühnbach & Felix Guthoff & Anke Bekk & Ludger Eltrop, 2020. "Development of Scenarios for a Multi-Model System Analysis Based on the Example of a Cellular Energy System," Energies, MDPI, vol. 13(4), pages 1-23, February.
    17. van der Mensbrugghe, Dominique & Peters, Jeffrey C., 2016. "Volume preserving CES and CET formulations," Conference papers 332784, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    18. Maria Blanco & Peter Witzke & Ignacio Perez Dominguez & Guna Salputra & Pilar Martinez, 2015. "Extension of the CAPRI model with an irrigation sub-module," JRC Research Reports JRC99828, Joint Research Centre.
    19. F. Castro-Llanos & G. Hyman & J. Rubiano & J. Ramirez-Villegas & H. Achicanoy, 2019. "Climate change favors rice production at higher elevations in Colombia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(8), pages 1401-1430, December.
    20. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:socarx:h2g6r. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://arabixiv.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.