IDEAS home Printed from https://ideas.repec.org/p/oec/itfaab/2012-3-en.html
   My bibliography  Save this paper

Electric Vehicles Revisited: Costs, Subsidies and Prospects

Author

Listed:
  • Philippe Crist

    (OECD)

Abstract

This paper compares the lifetime costs of like internal combustion and battery electric vehicle pairs on the market in France and finds that relative costs of electric vehicles remain elevated for consumers and even more so for society under current conditions and typical use scenarios. It also suggests that in those cases where electric vehicles do already compare favourably to internal combustion engine powered cars, subsidies may be superfluous. In the future, a number of simultaneous changes in battery electric vehicles (BEV) and ICE technology, fiscal regimes and prevailing energy prices might reduce and even eradicate the consumer cost differential in favour of ICEs. Reducing the social cost differential between BEVs and ICEs seems more challenging under most scenarios and, when successful, raises the question of how much should society seek to subsidise BEVs in instances where there begins to be a business case for them...

Suggested Citation

  • Philippe Crist, 2012. "Electric Vehicles Revisited: Costs, Subsidies and Prospects," International Transport Forum Discussion Papers 2012/3, OECD Publishing.
  • Handle: RePEc:oec:itfaab:2012/3-en
    DOI: 10.1787/5k8zvv7h9lq7-en
    as

    Download full text from publisher

    File URL: https://doi.org/10.1787/5k8zvv7h9lq7-en
    Download Restriction: no

    File URL: https://libkey.io/10.1787/5k8zvv7h9lq7-en?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Donateo, T. & Licci, F. & D’Elia, A. & Colangelo, G. & Laforgia, D. & Ciancarelli, F., 2015. "Evaluation of emissions of CO2 and air pollutants from electric vehicles in Italian cities," Applied Energy, Elsevier, vol. 157(C), pages 675-687.
    2. Proost, Stef & Van Dender, Kurt, 2012. "Energy and environment challenges in the transport sector," Economics of Transportation, Elsevier, vol. 1(1), pages 77-87.
    3. Tovar Reaños, Miguel A. & Sommerfeld, Katrin, 2018. "Fuel for inequality: Distributional effects of environmental reforms on private transport," Resource and Energy Economics, Elsevier, vol. 51(C), pages 28-43.
    4. Morris Brenna & Vittorio Bucci & Maria Carmen Falvo & Federica Foiadelli & Alessandro Ruvio & Giorgio Sulligoi & Andrea Vicenzutti, 2020. "A Review on Energy Efficiency in Three Transportation Sectors: Railways, Electrical Vehicles and Marine," Energies, MDPI, vol. 13(9), pages 1-19, May.
    5. Bruno De Borger & Stef Proost, 2015. "Tax and regulatory policies for European Transport – getting there, but in the slow lane," Working Papers of Department of Economics, Leuven 497597, KU Leuven, Faculty of Economics and Business (FEB), Department of Economics, Leuven.
    6. Nunes, Pedro & Figueiredo, Raquel & Brito, Miguel C., 2016. "The use of parking lots to solar-charge electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 679-693.
    7. Bamidele Victor Ayodele & Siti Indati Mustapa, 2020. "Life Cycle Cost Assessment of Electric Vehicles: A Review and Bibliometric Analysis," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    8. Sylvia Bleker & Christiaan Behrens & Paul Koster & Erik T. Verhoef, 2014. "Market Structure and the Pricing of New Products: A Nested Logit Approach with Asymmetric Firms," Tinbergen Institute Discussion Papers 14-142/VIII, Tinbergen Institute.
    9. Fontaínhas, José & Cunha, Jorge & Ferreira, Paula, 2016. "Is investing in an electric car worthwhile from a consumers' perspective?," Energy, Elsevier, vol. 115(P2), pages 1459-1477.
    10. Scorrano, Mariangela & Danielis, Romeo & Giansoldati, Marco, 2020. "Mandating the use of the electric taxis: The case of Florence," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 402-414.
    11. Yan, Shiyu, 2018. "The economic and environmental impacts of tax incentives for battery electric vehicles in Europe," Energy Policy, Elsevier, vol. 123(C), pages 53-63.
    12. van Velzen, Arjan & Annema, Jan Anne & van de Kaa, Geerten & van Wee, Bert, 2019. "Proposing a more comprehensive future total cost of ownership estimation framework for electric vehicles," Energy Policy, Elsevier, vol. 129(C), pages 1034-1046.
    13. Maia, Sara Costa & Teicher, Hannah & Meyboom, AnnaLisa, 2015. "Infrastructure as social catalyst: Electric vehicle station planning and deployment," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 53-65.
    14. Yecid Alfonso Mu oz Maldonado & C sar Acevedo & Edward Jerez & Carlos Sarmiento & Miguel De La Rosa & Adalberto Ospino, 2021. "Transition of Electric Mobility in Colombia: Technical and Economic Evaluation of Scenarios for the Integration of E-taxis in Bucaramanga," International Journal of Energy Economics and Policy, Econjournals, vol. 11(4), pages 461-469.
    15. Yang, Jie & Dong, Jing & Hu, Liang, 2018. "Design government incentive schemes for promoting electric taxis in China," Energy Policy, Elsevier, vol. 115(C), pages 1-11.
    16. Nunes, Pedro & Farias, Tiago & Brito, Miguel C., 2015. "Day charging electric vehicles with excess solar electricity for a sustainable energy system," Energy, Elsevier, vol. 80(C), pages 263-274.
    17. Nie, Yu (Marco) & Ghamami, Mehrnaz & Zockaie, Ali & Xiao, Feng, 2016. "Optimization of incentive polices for plug-in electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 103-123.
    18. Samuel Pelletier & Ola Jabali & Gilbert Laporte, 2016. "50th Anniversary Invited Article—Goods Distribution with Electric Vehicles: Review and Research Perspectives," Transportation Science, INFORMS, vol. 50(1), pages 3-22, February.
    19. Nie, Yu (Marco) & Ghamami, Mehrnaz, 2013. "A corridor-centric approach to planning electric vehicle charging infrastructure," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 172-190.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oec:itfaab:2012/3-en. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/itoecfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.