Advanced Search
MyIDEAS: Login to save this paper or follow this series

Stable Matchings and the Small Core in Nash Equilibrium in the College Admissions Problem

Contents:

Author Info

  • Jinpeng Ma

Abstract

Both rematching proof and strong equilibrium outcomes are stable with respect to the true preferences in the marriage problem. We show that not all rematching proof or strong equilibrium outcomes are stable in the college admissions problem. But we show that both rematching proof and strong equilibrium outcomes with truncations at the match point are all stable in the college admissions problem. Further, all true stable matchings can be achieved in both rematching proof and strong equilibrium with truncations at the match point. We show that any Nash equilibrium in truncations admits one and only one matching, stable or not. Therefore, the core at a Nash equilibrium in truncations must be small. But examples exist such that the set of stable matchings with respect to a Nash equilibrium may contain more than one matching. Nevertheless, each Nash equilibrium can only admit at most one true stable matching. If, indeed, there is a true stable matching at a Nash equilibrium, then the only possible equilibrium outcome will be the true stable matching, no matter how players manipulate their equilibrium strategies and how many other unstable matchings are there at the Nash equilibrium. Thus, we show that a necessary and sufficient condition for the stable matching rule to be implemented in a subset of Nash equilibria by a direct revelation game induced by a stable matching mechanism is that every Nash equilibrium profile in that subset admits one and only one true stable matching.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.kellogg.northwestern.edu/research/math/papers/1247.pdf
File Function: main text
Download Restriction: no

Bibliographic Info

Paper provided by Northwestern University, Center for Mathematical Studies in Economics and Management Science in its series Discussion Papers with number 1247.

as in new window
Length:
Date of creation: Nov 1998
Date of revision:
Handle: RePEc:nwu:cmsems:1247

Contact details of provider:
Postal: Center for Mathematical Studies in Economics and Management Science, Northwestern University, 580 Jacobs Center, 2001 Sheridan Road, Evanston, IL 60208-2014
Phone: 847/491-3527
Fax: 847/491-2530
Email:
Web page: http://www.kellogg.northwestern.edu/research/math/
More information through EDIRC

Order Information:
Email:

Related research

Keywords:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Danilov, Vladimir, 1992. "Implementation via Nash Equilibria," Econometrica, Econometric Society, vol. 60(1), pages 43-56, January.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Fuhito Kojima & Parag A. Pathak, 2009. "Incentives and Stability in Large Two-Sided Matching Markets," American Economic Review, American Economic Association, vol. 99(3), pages 608-27, June.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:nwu:cmsems:1247. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Fran Walker).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.