IDEAS home Printed from https://ideas.repec.org/p/nex/wpaper/safetyinnumbers.html
   My bibliography  Save this paper

Evaluating the "Safety In Numbers" Effect With Estimated Pedestrian Activity

Author

Listed:
  • Brendan Murphy
  • David Levinson
  • Andrew Owen

    (Nexus (Networks, Economics, and Urban Systems) Research Group, Department of Civil Engineering, University of Minnesota)

Abstract

Pedestrian and bicyclist collision risk assessment offers a powerful and informative tool in urban planning applications, and can greatly serve to inform proper placement of improvements and treatment projects. However, sufficiently detailed data regarding pedestrian and bicycle activity are not readily available for many urban areas, and thus the activity levels and collision risk levels must be estimated. This study builds upon other current work by the authors regarding pedestrian and bicycle activity estimation based on centrality and accessibility metrics, and extends the analysis techniques to estimation of pedestrian collision risk. The Safety In Numbers phenomenon, which refers to the observable effect that pedestrians become safer when there are more pedestrians present in a given area, i.e. that the individual per-pedestrian risk of a collision decreases with additional pedestrians, is a readily observed phenomenon that has been studied previously. The effect is investigated and observed in acquired traffic data, as well as estimated data, in Minneapolis, Minnesota.

Suggested Citation

  • Brendan Murphy & David Levinson & Andrew Owen, 2015. "Evaluating the "Safety In Numbers" Effect With Estimated Pedestrian Activity," Working Papers 000136, University of Minnesota: Nexus Research Group.
  • Handle: RePEc:nex:wpaper:safetyinnumbers
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/11299/179818
    File Function: First version, 2015
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brendan Murphy & David Levinson & Andrew Owen, 2015. "Accessibility and Centrality Based Estimation of Urban Pedestrian Activity," Working Papers 000143, University of Minnesota: Nexus Research Group.
    2. Zhang, Yuanyuan & Bigham, John & Ragland, David & Chen, Xiaohong, 2015. "Investigating the associations between road network structure and non-motorist accidents," Journal of Transport Geography, Elsevier, vol. 42(C), pages 34-47.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brendan Murphy & David Levinson & Andrew Owen, 2015. "Accessibility and Centrality Based Estimation of Urban Pedestrian Activity," Working Papers 000143, University of Minnesota: Nexus Research Group.
    2. Wang, Hwachyi & De Backer, Hans & Lauwers, Dirk & Chang, S.K.Jason, 2019. "A spatio-temporal mapping to assess bicycle collision risks on high-risk areas (Bridges) - A case study from Taipei (Taiwan)," Journal of Transport Geography, Elsevier, vol. 75(C), pages 94-109.
    3. Hwachyi Wang & S. K. Jason Chang & Hans De Backer & Dirk Lauwers & Philippe De Maeyer, 2019. "Integrating Spatial and Temporal Approaches for Explaining Bicycle Crashes in High-Risk Areas in Antwerp (Belgium)," Sustainability, MDPI, vol. 11(13), pages 1-28, July.
    4. Wu, Peijie & Meng, Xianghai & Song, Li, 2021. "Bayesian space–time modeling of bicycle and pedestrian crash risk by injury severity levels to explore the long-term spatiotemporal effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    5. Sun, Chenshuo & Pei, Xin & Hao, Junheng & Wang, Yewen & Zhang, Zuo & Wong, S.C., 2018. "Role of road network features in the evaluation of incident impacts on urban traffic mobility," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 101-116.
    6. Freiria, Susana & Ribeiro, Bernardete & Tavares, Alexandre O., 2015. "Understanding road network dynamics: Link-based topological patterns," Journal of Transport Geography, Elsevier, vol. 46(C), pages 55-66.
    7. Ji, Shujuan & Wang, Xin & Lyu, Tao & Liu, Xiaojie & Wang, Yuanqing & Heinen, Eva & Sun, Zhenwei, 2022. "Understanding cycling distance according to the prediction of the XGBoost and the interpretation of SHAP: A non-linear and interaction effect analysis," Journal of Transport Geography, Elsevier, vol. 103(C).
    8. Obelheiro, Marta Rodrigues & da Silva, Alan Ricardo & Nodari, Christine Tessele & Cybis, Helena Beatriz Bettella & Lindau, Luis Antonio, 2020. "A new zone system to analyze the spatial relationships between the built environment and traffic safety," Journal of Transport Geography, Elsevier, vol. 84(C).
    9. Choi, Dong-ah & Ewing, Reid, 2021. "Effect of street network design on traffic congestion and traffic safety," Journal of Transport Geography, Elsevier, vol. 96(C).
    10. Cooper, Crispin H.V., 2017. "Using spatial network analysis to model pedal cycle flows, risk and mode choice," Journal of Transport Geography, Elsevier, vol. 58(C), pages 157-165.
    11. Mohamed Bayoumi Kamel & Tarek Sayed, 2021. "The impact of bike network indicators on bike kilometers traveled and bike safety: A network theory approach," Environment and Planning B, , vol. 48(7), pages 2055-2072, September.
    12. Wang, Shiguang & Yu, Dexin & Kwan, Mei-Po & Zheng, Lili & Miao, Hongzhi & Li, Yongxing, 2020. "The impacts of road network density on motor vehicle travel: An empirical study of Chinese cities based on network theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 144-156.
    13. Parthasarathi, Pavithra & Levinson, David, 2018. "Network structure and the journey to work: An intra-metropolitan analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 292-304.
    14. Xie, Kun & Ozbay, Kaan & Yang, Di & Xu, Chuan & Yang, Hong, 2021. "Modeling bicycle crash costs using big data: A grid-cell-based Tobit model with random parameters," Journal of Transport Geography, Elsevier, vol. 91(C).
    15. An, Zihao & Xie, Bo & Liu, Qiyang, 2023. "No street is an Island: Street network morphologies and traffic safety," Transport Policy, Elsevier, vol. 141(C), pages 167-181.

    More about this item

    Keywords

    safety; walking; safety-in-numbers; crashes; traffic counts; network structure; accessibility;
    All these keywords.

    JEL classification:

    • J28 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Safety; Job Satisfaction; Related Public Policy
    • R14 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Land Use Patterns
    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise
    • R42 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Government and Private Investment Analysis; Road Maintenance; Transportation Planning

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nex:wpaper:safetyinnumbers. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Levinson (email available below). General contact details of provider: https://edirc.repec.org/data/nexmnus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.