IDEAS home Printed from https://ideas.repec.org/p/nex/wpaper/physicalactivity.html
   My bibliography  Save this paper

Physical Activity in School Travel: A Cross-Nested Logit Approach

Author

Listed:
  • Alireza Ermagun
  • David Levinson

    (Nexus (Networks, Economics, and Urban Systems) Research Group, Department of Civil Engineering, University of Minnesota)

Abstract

This paper considers school access by both active (walk, bike), quasi-active (walk to transit) and non-active modes (car) in a two-level cross-nested logit framework. A sample of 3,272 middle and high school students was collected in Tehran. The results of the cross-nested logit model suggest that for people who choose walking, increasing a 1 percent in home-to-school distance reduces the probability of walking by 3.51 percent. While, this reduction is equal to 2.82 and 2.27 percent as per the multinomial and nested logit models, respectively. This is a direct consequence of the model specification that results in underestimating the effect of distance by 1.24 percent. It is also worth mentioning that, a one percent increase in home-to-school distance diminishes the probability of taking public transit by 1.04 among public transit users, while increases the probability of shifting to public transit from walking by 1.39 percent. Further, a one percent increase of the distance to public transport, decreases the probability of students' physical activity, approximately, 0.04 percent.

Suggested Citation

  • Alireza Ermagun & David Levinson, 2015. "Physical Activity in School Travel: A Cross-Nested Logit Approach," Working Papers 000130, University of Minnesota: Nexus Research Group.
  • Handle: RePEc:nex:wpaper:physicalactivity
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/11299/179826
    File Function: First version, 2015
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vredin Johansson, Maria & Heldt, Tobias & Johansson, Per, 2006. "The effects of attitudes and personality traits on mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(6), pages 507-525, July.
    2. Small, Kenneth A, 1987. "A Discrete Choice Model for Ordered Alternatives," Econometrica, Econometric Society, vol. 55(2), pages 409-424, March.
    3. Sallis, James F. & Frank, Lawrence D. & Saelens, Brian E. & Kraft, M. Katherine, 2004. "Active transportation and physical activity: opportunities for collaboration on transportation and public health research," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(4), pages 249-268, May.
    4. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387.
    5. McMillan, Tracy E., 2007. "The relative influence of urban form on a child's travel mode to school," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(1), pages 69-79, January.
    6. Noreen McDonald, 2008. "Children’s mode choice for the school trip: the role of distance and school location in walking to school," Transportation, Springer, vol. 35(1), pages 23-35, January.
    7. Wen, Chieh-Hua & Koppelman, Frank S., 2001. "The generalized nested logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 627-641, August.
    8. Amith Yarlagadda & Sivaramakrishnan Srinivasan, 2008. "Modeling children’s school travel mode and parental escort decisions," Transportation, Springer, vol. 35(2), pages 201-218, March.
    9. Saelens, B.E. & Moudon, A.V. & Kang, B. & Hurvitz, P.M. & Zhou, C., 2014. "Relation between higher physical activity and public transit use," American Journal of Public Health, American Public Health Association, vol. 104(5), pages 854-859.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Milad Mehdizadeh & Trond Nordfjaern & AmirReza Mamdoohi, 2018. "The role of socio-economic, built environment and psychological factors in parental mode choice for their children in an Iranian setting," Transportation, Springer, vol. 45(2), pages 523-543, March.
    2. Ermagun, Alireza & Samimi, Amir, 2015. "Promoting active transportation modes in school trips," Transport Policy, Elsevier, vol. 37(C), pages 203-211.
    3. Alireza Ermagun & Amir Samimi, 2018. "Mode choice and travel distance joint models in school trips," Transportation, Springer, vol. 45(6), pages 1755-1781, November.
    4. Chen, Peng & Jiao, Junfeng & Xu, Mengyuan & Gao, Xu & Bischak, Chris, 2018. "Promoting active student travel: A longitudinal study," Journal of Transport Geography, Elsevier, vol. 70(C), pages 265-274.
    5. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    6. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2022. "Submodularity and local search approaches for maximum capture problems under generalized extreme value models," European Journal of Operational Research, Elsevier, vol. 300(3), pages 953-965.
    7. Stewart, Orion & Vernez Moudon, Anne & Claybrooke, Charlotte, 2012. "Common ground: Eight factors that influence walking and biking to school," Transport Policy, Elsevier, vol. 24(C), pages 240-248.
    8. Ermagun, Alireza & Levinson, David, 2016. "Intra-household bargaining for school trip accompaniment of children: A group decision approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 222-234.
    9. Peter Davis & Pasquale Schiraldi, 2014. "The flexible coefficient multinomial logit (FC-MNL) model of demand for differentiated products," RAND Journal of Economics, RAND Corporation, vol. 45(1), pages 32-63, March.
    10. Emerson Melo, 2021. "Learning in Random Utility Models Via Online Decision Problems," Papers 2112.10993, arXiv.org, revised Aug 2022.
    11. Singh, Nishant & Vasudevan, Vinod, 2018. "Understanding school trip mode choice – The case of Kanpur (India)," Journal of Transport Geography, Elsevier, vol. 66(C), pages 283-290.
    12. Laura Grigolon, 2021. "Blurred boundaries: A flexible approach for segmentation applied to the car market," Quantitative Economics, Econometric Society, vol. 12(4), pages 1273-1305, November.
    13. Newman, Jeffrey P. & Lurkin, Virginie & Garrow, Laurie A., 2018. "Computational methods for estimating multinomial, nested, and cross-nested logit models that account for semi-aggregate data," Journal of choice modelling, Elsevier, vol. 26(C), pages 28-40.
    14. Mitra, Raktim & Buliung, Ron N., 2015. "Exploring differences in school travel mode choice behaviour between children and youth," Transport Policy, Elsevier, vol. 42(C), pages 4-11.
    15. Lin, Jen-Jia & Yu, Tzu-Pen, 2011. "Built environment effects on leisure travel for children: Trip generation and travel mode," Transport Policy, Elsevier, vol. 18(1), pages 246-258, January.
    16. José-Benito Pérez-López & Margarita Novales & Francisco-Alberto Varela-García & Alfonso Orro, 2020. "Residential Location Econometric Choice Modeling with Irregular Zoning: Common Border Spatial Correlation Metric," Networks and Spatial Economics, Springer, vol. 20(3), pages 785-802, September.
    17. Mogens Fosgerau & Julien Monardo & André de Palma, 2019. "The Inverse Product Differentiation Logit Model," Working Papers hal-02183411, HAL.
    18. Li, Shengxiao & Zhao, Pengjun, 2015. "The determinants of commuting mode choice among school children in Beijing," Journal of Transport Geography, Elsevier, vol. 46(C), pages 112-121.
    19. Liu, Yang & Ji, Yanjie & Shi, Zhuangbin & He, Baohong & Liu, Qiyang, 2018. "Investigating the effect of the spatial relationship between home, workplace and school on parental chauffeurs’ daily travel mode choice," Transport Policy, Elsevier, vol. 69(C), pages 78-87.
    20. Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.

    More about this item

    Keywords

    Public Transit; Active Mode of Travel; School Trips; Tehran;
    All these keywords.

    JEL classification:

    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
    • I12 - Health, Education, and Welfare - - Health - - - Health Behavior
    • J13 - Labor and Demographic Economics - - Demographic Economics - - - Fertility; Family Planning; Child Care; Children; Youth
    • R14 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Land Use Patterns
    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise
    • R42 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Government and Private Investment Analysis; Road Maintenance; Transportation Planning
    • R53 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Regional Government Analysis - - - Public Facility Location Analysis; Public Investment and Capital Stock

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nex:wpaper:physicalactivity. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Levinson (email available below). General contact details of provider: https://edirc.repec.org/data/nexmnus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.