IDEAS home Printed from https://ideas.repec.org/p/nex/wpaper/londonaccessibility.html
   My bibliography  Save this paper

Accessibility and the choice of network investments in the London Underground

Author

Listed:
  • David Levinson
  • David Giacomin
  • Antony Badsey-Ellis

    (Nexus (Networks, Economics, and Urban Systems) Research Group, Department of Civil Engineering, University of Minnesota)

Abstract

In 1863, the Metropolitan Railway of what came to be known as the London Underground successfully opened as the world’s first subway. Its high ridership spawned interest in additional links. Entrepreneurs secured funding and then proposed new lines to Parliament for approval, though only a portion were actually approved. While putative rail barons may have conducted some economic analysis, the final decision lay with Parliament, which did not have available modern transportation economic or geographic analysis tools. How good were the decisions that Parliament made in approving Underground Lines? This paper explores the role accessibility played on the decision to approve or reject proposed early London Tube Schemes. It finds that maximizing accessibility to population (highly correlated with revenue and ridership) largely explains Parliamentary approvals and rejections.

Suggested Citation

  • David Levinson & David Giacomin & Antony Badsey-Ellis, 2014. "Accessibility and the choice of network investments in the London Underground," Working Papers 000124, University of Minnesota: Nexus Research Group.
  • Handle: RePEc:nex:wpaper:londonaccessibility
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/11299/180065
    File Function: Second version, 2015
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Levinson, 2012. "Network Structure and City Size," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-11, January.
    2. David Levinson, 1998. "Accessibility and the Journey to Work," Working Papers 199802, University of Minnesota: Nexus Research Group.
    3. Luis Bettencourt & Geoffrey West, 2010. "A unified theory of urban living," Nature, Nature, vol. 467(7318), pages 912-913, October.
    4. Jonathan Levine & Joe Grengs & Qingyun Shen & Qing Shen, 2012. "Does Accessibility Require Density or Speed?," Journal of the American Planning Association, Taylor & Francis Journals, vol. 78(2), pages 157-172.
    5. David Levinson & Feng Xie & Norah Oca, 2012. "Forecasting and Evaluating Network Growth," Networks and Spatial Economics, Springer, vol. 12(2), pages 239-262, June.
    6. G H Pirie, 1979. "Measuring Accessibility: A Review and Proposal," Environment and Planning A, , vol. 11(3), pages 299-312, March.
    7. Roger Vickerman & Klaus Spiekermann & Michael Wegener, 1999. "Accessibility and Economic Development in Europe," Regional Studies, Taylor & Francis Journals, vol. 33(1), pages 1-15.
    8. Alexander Erath & Michael Löchl & Kay Axhausen, 2009. "Graph-Theoretical Analysis of the Swiss Road and Railway Networks Over Time," Networks and Spatial Economics, Springer, vol. 9(3), pages 379-400, September.
    9. Andrew Owen & Paul Anderson & David Levinson, 2012. "Relative Accessibility and the Choice of Modes," Working Papers 000109, University of Minnesota: Nexus Research Group.
    10. Iacono, Michael & Krizek, Kevin J. & El-Geneidy, Ahmed, 2010. "Measuring non-motorized accessibility: issues, alternatives, and execution," Journal of Transport Geography, Elsevier, vol. 18(1), pages 133-140.
    11. Mei-Po Kwan, 2000. "Human Extensibility and Individual Hybrid-accessibility in Space-time: A Multi-scale Representation Using GIS," Advances in Spatial Science, in: Donald G. Janelle & David C. Hodge (ed.), Information, Place, and Cyberspace, chapter 14, pages 241-256, Springer.
    12. Feng Xie & David M. Levinson, 2011. "Evolving Transportation Networks," Transportation Research, Economics and Policy, Springer, number 978-1-4419-9804-0, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengying Cui & David Levinson, 2018. "Accessibility analysis of risk severity," Transportation, Springer, vol. 45(4), pages 1029-1050, July.
    2. Pavithra Parthasarathi & David Levinson & Hartwig Hochmair, 2013. "Network Structure and Travel Time Perception," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-13, October.
    3. Ahmed El-Geneidy & David Levinson, 2011. "Place Rank: Valuing Spatial Interactions," Networks and Spatial Economics, Springer, vol. 11(4), pages 643-659, December.
    4. Pavithra Parthasarathi & Hartwig Hochmair & David Levinson, 2015. "Street network structure and household activity spaces," Urban Studies, Urban Studies Journal Limited, vol. 52(6), pages 1090-1112, May.
    5. Boeing, Geoff, 2017. "Methods and Measures for Analyzing Complex Street Networks and Urban Form," SocArXiv 93h82, Center for Open Science.
    6. Robin Lovelace, 2021. "Open source tools for geographic analysis in transport planning," Journal of Geographical Systems, Springer, vol. 23(4), pages 547-578, October.
    7. Boisjoly, Geneviève & El-Geneidy, Ahmed M., 2017. "The insider: A planners' perspective on accessibility," Journal of Transport Geography, Elsevier, vol. 64(C), pages 33-43.
    8. Rahimi-Golkhandan, Armin & Garvin, Michael J. & Brown, Bryan L., 2019. "Characterizing and measuring transportation infrastructure diversity through linkages with ecological stability theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 114-130.
    9. Jen-Jia Lin & Chi-Hau Chen & Tsung-Yu Hsieh, 2016. "Job accessibility and ethnic minority employment in urban and rural areas in Taiwan," Papers in Regional Science, Wiley Blackwell, vol. 95(2), pages 363-382, June.
    10. Lissy La Paix & Karst Geurs, 2015. "Scenarios for measuring station-based impedances in a national transport model," ERSA conference papers ersa15p1310, European Regional Science Association.
    11. C. Jacobs-Crisioni & C. C. Koopmans, 2016. "Transport link scanner: simulating geographic transport network expansion through individual investments," Journal of Geographical Systems, Springer, vol. 18(3), pages 265-301, July.
    12. Páez, Antonio & Anjum, Zoha & Dickson-Anderson, Sarah E. & Schuster-Wallace, Corinne J. & Martín Ramos, Belén & Higgins, Christopher D., 2020. "Comparing distance, time, and metabolic energy cost functions for walking accessibility in infrastructure-poor regions," Journal of Transport Geography, Elsevier, vol. 82(C).
    13. Faghih Imani, Ahmadreza & Miller, Eric J. & Saxe, Shoshanna, 2019. "Cycle accessibility and level of traffic stress: A case study of Toronto," Journal of Transport Geography, Elsevier, vol. 80(C).
    14. David Levinson, 2012. "Network Structure and City Size," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-11, January.
    15. Kim, Junghwan & Lee, Bumsoo, 2019. "More than travel time: New accessibility index capturing the connectivity of transit services," Journal of Transport Geography, Elsevier, vol. 78(C), pages 8-18.
    16. Freiria, Susana & Ribeiro, Bernardete & Tavares, Alexandre O., 2015. "Understanding road network dynamics: Link-based topological patterns," Journal of Transport Geography, Elsevier, vol. 46(C), pages 55-66.
    17. Parker, Cory, 2019. "Bicycle use and accessibility among people experiencing homelessness in California cities," Journal of Transport Geography, Elsevier, vol. 80(C).
    18. Manaugh, Kevin & El-Geneidy, Ahmed, 2012. "What makes travel 'local': Defining and understanding local travel behaviour," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 5(3), pages 15-27.
    19. Nick Chaloux & Genevieve Boisjoly & Emily Grise & Ahmed El-Geneidy & David Levinson, 2019. "Chaloux, Nick, Boisjoly, Genevieve, Grise, Emily, El-Geneidy, Ahmed, and Levinson, D. (2019) I only get some satisfaction: Introducing satisfaction into measures of accessibility," Working Papers 2019-07, University of Minnesota: Nexus Research Group.
    20. Merlin, Louis A. & Levine, Jonathan & Grengs, Joe, 2018. "Accessibility analysis for transportation projects and plans," Transport Policy, Elsevier, vol. 69(C), pages 35-48.

    More about this item

    Keywords

    Accessibility; Network Growth; Subways; Public Transport; Travel Behavior; Networks;
    All these keywords.

    JEL classification:

    • R40 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nex:wpaper:londonaccessibility. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Levinson (email available below). General contact details of provider: https://edirc.repec.org/data/nexmnus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.