Advanced Search
MyIDEAS: Login to save this paper or follow this series

Risk aversion for nonsmooth utility functions

Contents:

Author Info

  • Wuerth, A.M.
  • Schumacher, J.M.

    (Tilburg University)

Abstract

Abstract This paper generalizes the notion of risk aversion for functions which are not necessarily differentiable nor strictly concave. Using an approach based on superdifferentials, we define the notion of a risk aversion measure, from which the classical absolute as well as relative risk aversion follows as a Radon-Nikodym derivative if it exists. Using this notion, we are able to compare risk aversions for nonsmooth utility functions, and to extend a classical result of Pratt to the case of nonsmooth utility functions. We prove how relative risk aversion is connected to a super-power property of the function. Furthermore, we show how boundedness of the relative risk aversion translates to the corresponding property of the conjugate function. We propose also a weaker ordering of the risk aversion, referred to as essential bounds for the risk aversion, which requires only that bounds of the (absolute or relative) risk aversion hold up to a certain tolerance.

(This abstract was borrowed from another version of this item.)

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://arno.uvt.nl/show.cgi?fid=121460
Our checks indicate that this address may not be valid because: 404 Not Found. If this is indeed the case, please notify (Economists Online Support)
Download Restriction: no

Bibliographic Info

Paper provided by Tilburg University in its series Open Access publications from Tilburg University with number urn:nbn:nl:ui:12-5241371.

as in new window
Length:
Date of creation: 2011
Date of revision:
Publication status: Published in Journal of Mathematical Economics (2011) v.47, p.109-128
Handle: RePEc:ner:tilbur:urn:nbn:nl:ui:12-5241371

Contact details of provider:
Web page: http://www.tilburguniversity.edu/

Related research

Keywords:

Other versions of this item:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Mark J Machina, 1982. ""Expected Utility" Analysis without the Independence Axiom," Levine's Working Paper Archive 7650, David K. Levine.
  2. Nielsen, Lars Tyge, 1997. "Monotone Risk Aversion," CEPR Discussion Papers 1651, C.E.P.R. Discussion Papers.
  3. Zhegal, Amina & Touzi, Nizar & Bouchard, Bruno, 2004. "Dual Formulation of the Utility Maximization Problem : the case of Nonsmooth Utility," Economics Papers from University Paris Dauphine 123456789/1531, Paris Dauphine University.
  4. Ariel Rubinstein, 2006. "Lecture Notes in Microeconomic Theory," Online economics textbooks, SUNY-Oswego, Department of Economics, number gradmicro1, Spring.
  5. B. Bouchard & N. Touzi & A. Zeghal, 2004. "Dual formulation of the utility maximization problem: the case of nonsmooth utility," Papers math/0405290, arXiv.org.
  6. Mas-Colell, Andreu & Whinston, Michael D. & Green, Jerry R., 1995. "Microeconomic Theory," OUP Catalogue, Oxford University Press, number 9780195102680, September.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:ner:tilbur:urn:nbn:nl:ui:12-5241371. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Economists Online Support).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.