IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/23855.html
   My bibliography  Save this paper

Environmental Consequences of Hydrocarbon Infrastructure Policy

Author

Listed:
  • Thomas R. Covert
  • Ryan Kellogg

Abstract

We study policies that aim to “keep carbon in the ground” by blocking fossil fuel infrastructure investment. Our analysis relies on a model of hydrocarbon production and transportation, incorporating substitution between pipeline infrastructure and flexible alternatives, like crude-by-rail. We apply the model to the Dakota Access Pipeline (DAPL), which moves oil from North Dakota to Texas and was controversially completed in 2017. Had DAPL’s construction been enjoined, we estimate that 81% of the blocked pipeline flows would move by rail instead. This substitution induces both private costs and local environmental damage, since rail transport imposes greater local externalities than pipelines.

Suggested Citation

  • Thomas R. Covert & Ryan Kellogg, 2017. "Environmental Consequences of Hydrocarbon Infrastructure Policy," NBER Working Papers 23855, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:23855
    Note: EEE IO
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w23855.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alquist, Ron & Kilian, Lutz & Vigfusson, Robert J., 2013. "Forecasting the Price of Oil," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 427-507, Elsevier.
    2. Hughes, Jonathan E., 2011. "The higher price of cleaner fuels: Market power in the rail transport of fuel ethanol," Journal of Environmental Economics and Management, Elsevier, vol. 62(2), pages 123-139, September.
    3. Steven T. Berry, 1994. "Estimating Discrete-Choice Models of Product Differentiation," RAND Journal of Economics, The RAND Corporation, vol. 25(2), pages 242-262, Summer.
    4. Catherine Hausman & Ryan Kellogg, 2015. "Welfare and Distributional Implications of Shale Gas," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 46(1 (Spring), pages 71-139.
    5. Karen Clay & Akshaya Jha & Nicholas Muller & Randall Walsh, 2017. "The External Costs of Transporting Petroleum Products by Pipelines and Rail: Evidence From Shipments of Crude Oil from North Dakota," NBER Working Papers 23852, National Bureau of Economic Research, Inc.
    6. Smith, James L. & Lee, Thomas K., 2017. "The price elasticity of U.S. shale oil reserves," Energy Economics, Elsevier, vol. 67(C), pages 121-135.
    7. Severin Borenstein, 2005. "The Long-Run Efficiency of Real-Time Electricity Pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 93-116.
    8. Meghan R. Busse & Nathaniel O. Keohane, 2007. "Market effects of environmental regulation: coal, railroads, and the 1990 Clean Air Act," RAND Journal of Economics, RAND Corporation, vol. 38(4), pages 1159-1179, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olufolajimi Oke & Daniel Huppmann & Max Marshall & Ricky Poulton & Sauleh Siddiqui, 2019. "Multimodal Transportation Flows in Energy Networks with an Application to Crude Oil Markets," Networks and Spatial Economics, Springer, vol. 19(2), pages 521-555, June.
    2. Mason, Charles F. & Wilmot, Neil A., 2020. "Jumps in the convenience yield of crude oil," Resource and Energy Economics, Elsevier, vol. 60(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shaun McRae, 2017. "Crude Oil Price Differentials and Pipeline Infrastructure," NBER Working Papers 24170, National Bureau of Economic Research, Inc.
    2. Ikonnikova, Svetlana A. & del Carpio Neyra, Victor & Berdysheva, Sofia, 2022. "Investment choices and production dynamics: The role of price expectations, financial deficit, and production constraints," Journal of Economics and Business, Elsevier, vol. 120(C).
    3. Yin Chu & J. Scott Holladay & Jacob LaRiviere, 2017. "Opportunity Cost Pass-through from Fossil Fuel Market Prices to Procurement Costs of the U.S. Power Producers," Working Papers 2017-02, University of Tennessee, Department of Economics.
    4. LaPlue, Lawrence D., 2022. "Environmental consequences of natural gas wellhead pricing deregulation," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).
    5. Arezki, Rabah & Fetzer, Thiemo & Pisch, Frank, 2017. "On the comparative advantage of U.S. manufacturing: Evidence from the shale gas revolution," Journal of International Economics, Elsevier, vol. 107(C), pages 34-59.
    6. Winters, John V. & Cai, Zhengyu & Maguire, Karen & Sengupta, Shruti, 2019. "Do Workers Benefit from Resource Booms in Their Home State? Evidence from the Fracking Era," GLO Discussion Paper Series 400, Global Labor Organization (GLO).
    7. Hoy, Kyle A. & Wrenn, Douglas H., 2018. "Unconventional energy, taxation, and interstate welfare: An analysis of Pennsylvania's severance tax policy," Energy Economics, Elsevier, vol. 73(C), pages 53-65.
    8. Grant D. Jacobsen, 2019. "The impact of energy booms on local workers," IZA World of Labor, Institute of Labor Economics (IZA), pages 468-468, November.
    9. Christopher R. Knittel & Konstantinos Metaxoglou & Anson Soderbery & André Trindade, 2022. "Exporting global warming? Coal trade and the shale gas boom," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 55(3), pages 1294-1333, August.
    10. Apergis, Nicholas & Mustafa, Ghulam & Dastidar, Sayantan Ghosh, 2021. "An analysis of the impact of unconventional oil and gas activities on public health: New evidence across Oklahoma counties," Energy Economics, Elsevier, vol. 97(C).
    11. John Coglianese & Lucas W. Davis & Lutz Kilian & James H. Stock, 2017. "Anticipation, Tax Avoidance, and the Price Elasticity of Gasoline Demand," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 1-15, January.
    12. Robert W. Hahn & Robert D. Metcalfe, 2021. "Efficiency and Equity Impacts of Energy Subsidies," American Economic Review, American Economic Association, vol. 111(5), pages 1658-1688, May.
    13. Donna, Javier D., 2018. "Measuring Long-Run Price Elasticities in Urban Travel Demand," MPRA Paper 90059, University Library of Munich, Germany.
    14. Sharat Ganapati & Joseph S. Shapiro & Reed Walker, 2016. "The Incidence of Carbon Taxes in U.S. Manufacturing: Lessons from Energy Cost Pass-through," Cowles Foundation Discussion Papers 2038R3, Cowles Foundation for Research in Economics, Yale University, revised Mar 2018.
    15. Lade, Gabriel E. & Rudik, Ivan, 2020. "Costs of inefficient regulation: Evidence from the Bakken," Journal of Environmental Economics and Management, Elsevier, vol. 102(C).
    16. Grant D. Jacobsen, 2019. "Who Wins In An Energy Boom? Evidence From Wage Rates And Housing," Economic Inquiry, Western Economic Association International, vol. 57(1), pages 9-32, January.
    17. Sharat Ganapati & Joseph S. Shapiro & Reed Walker, 2020. "Energy Cost Pass-Through in US Manufacturing: Estimates and Implications for Carbon Taxes," American Economic Journal: Applied Economics, American Economic Association, vol. 12(2), pages 303-342, April.
    18. Hill, Elaine L. & Ma, Lala, 2022. "Drinking water, fracking, and infant health," Journal of Health Economics, Elsevier, vol. 82(C).
    19. Jeffrey C. Peters & Thomas W. Hertel, 2017. "Achieving the Clean Power Plan 2030 CO2 Target with the New Normal in Natural Gas Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    20. Prest, Brian C. & Stock, James H., 2023. "Climate royalty surcharges," Journal of Environmental Economics and Management, Elsevier, vol. 120(C).

    More about this item

    JEL classification:

    • L13 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Oligopoly and Other Imperfect Markets
    • L71 - Industrial Organization - - Industry Studies: Primary Products and Construction - - - Mining, Extraction, and Refining: Hydrocarbon Fuels
    • L95 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Gas Utilities; Pipelines; Water Utilities
    • Q35 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Hydrocarbon Resources

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:23855. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.