Advanced Search
MyIDEAS: Login

Comparing IV With Structural Models: What Simple IV Can and Cannot Identify

Contents:

Author Info

  • James J. Heckman
  • Sergio Urzua

Abstract

This paper compares the economic questions addressed by instrumental variables estimators with those addressed by structural approaches. We discuss Marschak's Maxim: estimators should be selected on the basis of their ability to answer well-posed economic problems with minimal assumptions. A key identifying assumption that allows structural methods to be more informative than IV can be tested with data and does not have to be imposed.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.nber.org/papers/w14706.pdf
Download Restriction: no

Bibliographic Info

Paper provided by National Bureau of Economic Research, Inc in its series NBER Working Papers with number 14706.

as in new window
Length:
Date of creation: Feb 2009
Date of revision:
Publication status: published as Heckman, James J. & Urzúa, Sergio, 2010. "Comparing IV with structural models: What simple IV can and cannot identify," Journal of Econometrics, Elsevier, vol. 156(1), pages 27-37, May.
Handle: RePEc:nbr:nberwo:14706

Note: TWP
Contact details of provider:
Postal: National Bureau of Economic Research, 1050 Massachusetts Avenue Cambridge, MA 02138, U.S.A.
Phone: 617-868-3900
Email:
Web page: http://www.nber.org
More information through EDIRC

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Cunha, Flavio & Heckman, James J. & Navarro, Salvador, 2004. "Separating Uncertainty from Heterogeneity in Life Cycle Earnings," IZA Discussion Papers 1437, Institute for the Study of Labor (IZA).
  2. James J. Heckman & Jora Stixrud & Sergio Urzua, 2006. "The Effects of Cognitive and Noncognitive Abilities on Labor Market Outcomes and Social Behavior," NBER Working Papers 12006, National Bureau of Economic Research, Inc.
  3. James J. Heckman & Edward Vytlacil, 2005. "Structural Equations, Treatment Effects and Econometric Policy Evaluation," NBER Working Papers 11259, National Bureau of Economic Research, Inc.
  4. Carneiro, Pedro & Hansen, Karsten T. & Heckman, James J., 2003. "Estimating Distributions of Treatment Effects with an Application to the Returns to Schooling and Measurement of the Effects of Uncertainty on College Choice," IZA Discussion Papers 767, Institute for the Study of Labor (IZA).
  5. Heckman, James J. & Schmierer, Daniel & Urzua, Sergio, 2010. "Testing the correlated random coefficient model," Journal of Econometrics, Elsevier, vol. 158(2), pages 177-203, October.
  6. Joshua D. Angrist & Guido W. Imbens, 1995. "Identification and Estimation of Local Average Treatment Effects," NBER Technical Working Papers 0118, National Bureau of Economic Research, Inc.
  7. Sergio Urzúa, 2008. "Racial Labor Market Gaps: The Role of Abilities and Schooling Choices," Journal of Human Resources, University of Wisconsin Press, vol. 43(4).
  8. Heckman, James & Layne-Farrar, Anne & Todd, Petra, 1996. "Human Capital Pricing Equations with an Application to Estimating the Effect of Schooling Quality on Earnings," The Review of Economics and Statistics, MIT Press, vol. 78(4), pages 562-610, November.
  9. Heckman, James J. & Navarro, Salvador, 2007. "Dynamic discrete choice and dynamic treatment effects," Journal of Econometrics, Elsevier, vol. 136(2), pages 341-396, February.
  10. Flavio Cunha & James J. Heckman & Salvador Navarro, 2007. "The Identification and Economic Content of Ordered Choice Models with Stochastic Thresholds," NBER Technical Working Papers 0340, National Bureau of Economic Research, Inc.
  11. James J. Heckman & Vytlacil, Edward J., 2007. "Econometric Evaluation of Social Programs, Part II: Using the Marginal Treatment Effect to Organize Alternative Econometric Estimators to Evaluate Social Programs, and to Forecast their Effects in New," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 71 Elsevier.
  12. Matzkin, Rosa L., 1986. "Restrictions of economic theory in nonparametric methods," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 42, pages 2523-2558 Elsevier.
  13. James J. Heckman & Sergio Urzua & Edward Vytlacil, 2008. "Instrumental Variables In Models With Multiple Outcomes: The General Unordered Case," Working Papers 200830, Geary Institute, University College Dublin.
  14. James J. Heckman, 2008. "Econometric Causality," NBER Working Papers 13934, National Bureau of Economic Research, Inc.
  15. James J. Heckman & John Eric Humphries & Paul A. LaFontaine & Pedro L. Rodr�guez, 2012. "Taking the Easy Way Out: How the GED Testing Program Induces Students to Drop Out," Journal of Labor Economics, University of Chicago Press, vol. 30(3), pages 495 - 520.
  16. Abbring, Jaap H. & Heckman, James J., 2007. "Econometric Evaluation of Social Programs, Part III: Distributional Treatment Effects, Dynamic Treatment Effects, Dynamic Discrete Choice, and General Equilibrium Policy Evaluation," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 72 Elsevier.
  17. Heckman, James J. & Urzua, Sergio & Vytlacil, Edward, 2006. "Understanding Instrumental Variables in Models with Essential Heterogeneity," IZA Discussion Papers 2320, Institute for the Study of Labor (IZA).
  18. James J. Heckman & Vytlacil, Edward J., 2007. "Econometric Evaluation of Social Programs, Part I: Causal Models, Structural Models and Econometric Policy Evaluation," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 70 Elsevier.
  19. Flavio Cunha & James J. Heckman, 2007. "The Evolution of Inequality, Heterogeneity and Uncertainty in Labor Earnings in the U.S. Economy," NBER Working Papers 13526, National Bureau of Economic Research, Inc.
  20. Jacob A. Mincer, 1974. "Introduction to "Schooling, Experience, and Earnings"," NBER Chapters, in: Schooling, Experience, and Earnings, pages 1-4 National Bureau of Economic Research, Inc.
  21. Stephen V. Cameron & James J. Heckman, 1998. "Life Cycle Schooling and Dynamic Selection Bias: Models and Evidence for Five Cohorts of American Males," Journal of Political Economy, University of Chicago Press, vol. 106(2), pages 262-333, April.
  22. Jacob A. Mincer, 1974. "Schooling, Experience, and Earnings," NBER Books, National Bureau of Economic Research, Inc, number minc74-1.
  23. Michael P. Keane & Kenneth I. Wolpin, 1995. "The career decisions of young men," Working Papers 559, Federal Reserve Bank of Minneapolis.
  24. Matzkin, Rosa L., 2007. "Nonparametric identification," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 73 Elsevier.
  25. Matzkin, Rosa L, 1992. "Nonparametric and Distribution-Free Estimation of the Binary Threshold Crossing and the Binary Choice Models," Econometrica, Econometric Society, vol. 60(2), pages 239-70, March.
  26. John M. Barron & Mark C. Berger & Dan A. Black, 2006. "Selective Counteroffers," Journal of Labor Economics, University of Chicago Press, vol. 24(3), pages 385-410, July.
  27. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
  28. David Card, 2000. "Estimating the Return to Schooling: Progress on Some Persistent Econometric Problems," NBER Working Papers 7769, National Bureau of Economic Research, Inc.
  29. Matzkin, Rosa L., 1993. "Nonparametric identification and estimation of polychotomous choice models," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 137-168, July.
Full references (including those not matched with items on IDEAS)

Citations

Blog mentions

As found by EconAcademics.org, the blog aggregator for Economics research:
  1. Rise and Fall of a Method
    by Agent Continuum in Agent Continuum on 2010-04-21 13:53:35
  2. Causality and Econometrics
    by Liam Delaney in Geary Behaviour Centre on 2009-04-28 19:19:00
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:14706. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.