Advanced Search
MyIDEAS: Login to save this paper or follow this series

A New Procedure For Multiple Testing Of Econometric Models

Contents:

Author Info

  • Maxwell L. King

    ()

  • Xibin Zhang

    ()

  • Muhammad Akram

Abstract

A significant role for hypothesis testing in econometrics involves diagnostic checking. When checking the adequacy of a chosen model, researchers typically employ a range of diagnostic tests, each of which is designed to detect a particular form of model inadequacy. A major problem is how best to control the overall probability of rejecting the model when it is true and multiple test statistics are used. This paper presents a new multiple testing procedure, which involves checking whether the calculated values of the diagnostic statistics are consistent with the postulated model being true. This is done through a combination of bootstrapping to obtain a multivariate kernel density estimator of the joint density of the test statistics under the null hypothesis and Monte Carlo simulations to obtain a p value using this kernel density. We prove that under some regularity conditions, the estimated p value of our test procedure is a consistent estimate of the true p value. The proposed testing procedure is applied to tests for autocorrelation in an observed time series, for normality, and for model misspecification through the information matrix. We find that our testing procedure has correct or nearly correct sizes and good powers, particular for more complicated testing problems. We believe it is the first good method for calculating the overall p value for a vector of test statistics based on simulation.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2011/wp7-11.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Monash University, Department of Econometrics and Business Statistics in its series Monash Econometrics and Business Statistics Working Papers with number 7/11.

as in new window
Length: 38 pages
Date of creation: 25 May 2011
Date of revision:
Handle: RePEc:msh:ebswps:2011-7

Contact details of provider:
Postal: PO Box 11E, Monash University, Victoria 3800, Australia
Phone: +61-3-9905-2489
Fax: +61-3-9905-5474
Email:
Web page: http://www.buseco.monash.edu.au/depts/ebs/
More information through EDIRC

Order Information:
Email:
Web: http://www.buseco.monash.edu.au/depts/ebs/pubs/wpapers/

Related research

Keywords: Bootstrapping; consistency; information matrix test; Markov chain Monte Carlo simulation; multivariate kernel density; normality; serial correlation; test vector;

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Zhang, Xibin & King, Maxwell L. & Hyndman, Rob J., 2006. "A Bayesian approach to bandwidth selection for multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3009-3031, July.
  2. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2011-7. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Simone Grose).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.