Advanced Search
MyIDEAS: Login

Nonparametric modeling and forecasting electricity demand: an empirical study

Contents:

Author Info

  • Han Lin Shang

    ()

Abstract

This paper uses half-hourly electricity demand data in South Australia as an empirical study of nonparametric modeling and forecasting methods for prediction from half-hour ahead to one year ahead. A notable feature of the univariate time series of electricity demand is the presence of both intraweek and intraday seasonalities. An intraday seasonal cycle is apparent from the similarity of the demand from one day to the next, and an intraweek seasonal cycle is evident from comparing the demand on the corresponding day of adjacent weeks. There is a strong appeal in using forecasting methods that are able to capture both seasonalities. In this paper, the forecasting methods slice a seasonal univariate time series into a time series of curves. The forecasting methods reduce the dimensionality by applying functional principal component analysis to the observed data, and then utilize an univariate time series forecasting method and functional principal component regression techniques. When data points in the most recent curve are sequentially observed, updating methods can improve the point and interval forecast accuracy. We also revisit a nonparametric approach to construct prediction intervals of updated forecasts, and evaluate the interval forecast accuracy.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2010/wp19-10.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Monash University, Department of Econometrics and Business Statistics in its series Monash Econometrics and Business Statistics Working Papers with number 19/10.

as in new window
Length: 27 pages
Date of creation: 18 Oct 2010
Date of revision:
Handle: RePEc:msh:ebswps:2010-19

Contact details of provider:
Postal: PO Box 11E, Monash University, Victoria 3800, Australia
Phone: +61-3-9905-2489
Fax: +61-3-9905-5474
Email:
Web page: http://www.buseco.monash.edu.au/depts/ebs/
More information through EDIRC

Order Information:
Email:
Web: http://www.buseco.monash.edu.au/depts/ebs/pubs/wpapers/

Related research

Keywords: Functional principal component analysis; functional time series; multivariate time series; ordinary least squares; penalized least squares; ridge regression; seasonal time series;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Rob J Hyndman & Heather Booth, 2006. "Stochastic population forecasts using functional data models for mortality, fertility and migration," Monash Econometrics and Business Statistics Working Papers 14/06, Monash University, Department of Econometrics and Business Statistics.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2010-19. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Simone Grose).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.