Advanced Search
MyIDEAS: Login

Demand Forecasting: Evidence-based Methods

Contents:

Author Info

  • J. Scott Armstrong
  • Kesten C. Green

Abstract

We looked at evidence from comparative empirical studies to identify methods that can be useful for predicting demand in various situations and to warn against methods that should not be used. In general, use structured methods and avoid intuition, unstructured meetings, focus groups, and data mining. In situations where there are sufficient data, use quantitative methods including extrapolation, quantitative analogies, rule-based forecasting, and causal methods. Otherwise, use methods that structure judgement including surveys of intentions and expectations, judgmental bootstrapping, structured analogies, and simulated interaction. Managers' domain knowledge should be incorporated into statistical forecasts. Methods for combining forecasts, including Delphi and prediction markets, improve accuracy. We provide guidelines for the effective use of forecasts, including such procedures as scenarios. Few organizations use many of the methods described in this paper. Thus, there are opportunities to improve efficiency by adopting these forecasting practices.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2005/wp24-05.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Monash University, Department of Econometrics and Business Statistics in its series Monash Econometrics and Business Statistics Working Papers with number 24/05.

as in new window
Length: 17 pages
Date of creation: Sep 2005
Date of revision:
Handle: RePEc:msh:ebswps:2005-24

Contact details of provider:
Postal: PO Box 11E, Monash University, Victoria 3800, Australia
Phone: +61-3-9905-2489
Fax: +61-3-9905-5474
Email:
Web page: http://www.buseco.monash.edu.au/depts/ebs/
More information through EDIRC

Order Information:
Email:
Web: http://www.buseco.monash.edu.au/depts/ebs/pubs/wpapers/

Related research

Keywords: Accuracy; expertise; forecasting; judgement; marketing.;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Dangerfield, Byron J. & Morris, John S., 1992. "Top-down or bottom-up: Aggregate versus disaggregate extrapolations," International Journal of Forecasting, Elsevier, vol. 8(2), pages 233-241, October.
  2. J.S. Armstrong, 2005. "Structured Analogies for Forecasting," General Economics and Teaching 0502001, EconWPA.
  3. JS Armstrong & Fred Collopy, 2004. "Integration of Statistical Methods and Judgment for Time Series," General Economics and Teaching 0412024, EconWPA.
  4. Wolfers, Justin & Zitzewitz, Eric, 2004. "Prediction Markets," Working paper 259, Regulation2point0.
  5. Armstrong, J. Scott & Collopy, Fred, 1992. "Error measures for generalizing about forecasting methods: Empirical comparisons," International Journal of Forecasting, Elsevier, vol. 8(1), pages 69-80, June.
  6. F. Thomas Juster, 1966. "Consumer Buying Intentions and Purchase Probability: An Experiment in Survey Design," NBER Books, National Bureau of Economic Research, Inc, number just66-2, May.
  7. Kesten C. Green & J. Scott Armstrong, 2004. "Value of Expertise For Forecasting Decisions in Conflicts," Monash Econometrics and Business Statistics Working Papers 27/04, Monash University, Department of Econometrics and Business Statistics.
  8. repec:reg:rpubli:259 is not listed on IDEAS
  9. Armstrong, J Scott & Collopy, Fred, 2001. "Identification of Asymmetric Prediction Intervals through Causal Forces," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(4), pages 273-83, July.
  10. Green, Kesten C., 2002. "Forecasting decisions in conflict situations: a comparison of game theory, role-playing, and unaided judgement," International Journal of Forecasting, Elsevier, vol. 18(3), pages 321-344.
  11. Robert C. Blattberg & Stephen J. Hoch, 1990. "Database Models and Managerial Intuition: 50% Model + 50% Manager," Management Science, INFORMS, vol. 36(8), pages 887-899, August.
  12. Armstrong, J. Scott & Morwitz, Vicki G. & Kumar, V., 2000. "Sales forecasts for existing consumer products and services: Do purchase intentions contribute to accuracy?," International Journal of Forecasting, Elsevier, vol. 16(3), pages 383-397.
  13. Tyebjee, Tyzoon T., 1987. "Behavioral biases in new product forecasting," International Journal of Forecasting, Elsevier, vol. 3(3-4), pages 393-404.
  14. Green, Kesten C., 2005. "Game theory, simulated interaction, and unaided judgement for forecasting decisions in conflicts: Further evidence," International Journal of Forecasting, Elsevier, vol. 21(3), pages 463-472.
  15. Makridakis, Spyros & Hibon, Michele & Lusk, Ed & Belhadjali, Moncef, 1987. "Confidence intervals: An empirical investigation of the series in the M-competition," International Journal of Forecasting, Elsevier, vol. 3(3-4), pages 489-508.
  16. Paul W. Rhode & Koleman S. Strumpf, 2004. "Historical Presidential Betting Markets," Journal of Economic Perspectives, American Economic Association, vol. 18(2), pages 127-141, Spring.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Yelland, Phillip M., 2010. "Bayesian forecasting of parts demand," International Journal of Forecasting, Elsevier, vol. 26(2), pages 374-396, April.
  2. Mkumbwa, Solomon S., 2011. "Cereal food commodities in Eastern Africa: consumption - production gap trends and projections for 2020," MPRA Paper 42113, University Library of Munich, Germany.
  3. Amiri, Arshia & Bakhshoodeh, Mohamad & Najafi, Bahaeddin, 2011. "Forecasting seasonality in prices of potatoes and onions: challenge between geostatistical models, neuro fuzzy approach and Winter method," MPRA Paper 34093, University Library of Munich, Germany.

Lists

This item is featured on the following reading lists or Wikipedia pages:
  1. Technology Assessment

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2005-24. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Simone Grose).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.