IDEAS home Printed from https://ideas.repec.org/p/mit/sloanp/2626.html
   My bibliography  Save this paper

Polynomial-time highest-gain augmenting path algorithms for the generalized circulation problem

Author

Listed:
  • Goldfarb, Donald.
  • Jin, Zhiying.
  • Orlin, James B., 1953-.

Abstract

Includes bibliographical references (p. 15-16).

Suggested Citation

  • Goldfarb, Donald. & Jin, Zhiying. & Orlin, James B., 1953-., 1996. "Polynomial-time highest-gain augmenting path algorithms for the generalized circulation problem," Working papers 3909-96., Massachusetts Institute of Technology (MIT), Sloan School of Management.
  • Handle: RePEc:mit:sloanp:2626
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/1721.1/2626
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. F. Glover & J. Hultz & D. Klingman & J. Stutz, 1978. "Generalized Networks: A Fundamental Computer-Based Planning Tool," Management Science, INFORMS, vol. 24(12), pages 1209-1220, August.
    2. James B. Orlin, 1993. "A Faster Strongly Polynomial Minimum Cost Flow Algorithm," Operations Research, INFORMS, vol. 41(2), pages 338-350, April.
    3. Fred Glover & Darwin Klingman & Nancy Phillips, 1990. "Netform Modeling and Applications," Interfaces, INFORMS, vol. 20(4), pages 7-27, August.
    4. Andrew V. Goldberg & Serge A. Plotkin & Éva Tardos, 1991. "Combinatorial Algorithms for the Generalized Circulation Problem," Mathematics of Operations Research, INFORMS, vol. 16(2), pages 351-381, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kevin D. Wayne, 2002. "A Polynomial Combinatorial Algorithm for Generalized Minimum Cost Flow," Mathematics of Operations Research, INFORMS, vol. 27(3), pages 445-459, August.
    2. Tomasz Radzik, 1998. "Faster Algorithms for the Generalized Network Flow Problem," Mathematics of Operations Research, INFORMS, vol. 23(1), pages 69-100, February.
    3. László A. Végh, 2017. "A Strongly Polynomial Algorithm for Generalized Flow Maximization," Mathematics of Operations Research, INFORMS, vol. 42(1), pages 179-211, January.
    4. László A. Végh, 2014. "Concave Generalized Flows with Applications to Market Equilibria," Mathematics of Operations Research, INFORMS, vol. 39(2), pages 573-596, May.
    5. Hochbaum, Dorit S., 2002. "Solving integer programs over monotone inequalities in three variables: A framework for half integrality and good approximations," European Journal of Operational Research, Elsevier, vol. 140(2), pages 291-321, July.
    6. Laszlo A. Vegh, 2011. "Concave Generalized Flows with Applications to Market Equilibria," Papers 1109.3893, arXiv.org, revised Apr 2012.
    7. Dereniowski, Dariusz & Kubiak, Wiesław, 2020. "Shared processor scheduling of multiprocessor jobs," European Journal of Operational Research, Elsevier, vol. 282(2), pages 464-477.
    8. Balaji Gopalakrishnan & Seunghyun Kong & Earl Barnes & Ellis Johnson & Joel Sokol, 2011. "A least-squares minimum-cost network flow algorithm," Annals of Operations Research, Springer, vol. 186(1), pages 119-140, June.
    9. Laguna, Manuel & Kelly, James P. & Gonzalez-Velarde, JoseLuis & Glover, Fred, 1995. "Tabu search for the multilevel generalized assignment problem," European Journal of Operational Research, Elsevier, vol. 82(1), pages 176-189, April.
    10. Dewil, R. & Vansteenwegen, P. & Cattrysse, D. & Van Oudheusden, D., 2015. "A minimum cost network flow model for the maximum covering and patrol routing problem," European Journal of Operational Research, Elsevier, vol. 247(1), pages 27-36.
    11. Shoshana Anily, 1996. "The vehicle‐routing problem with delivery and back‐haul options," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(3), pages 415-434, April.
    12. Yosuke Hanawa & Yuya Higashikawa & Naoyuki Kamiyama & Naoki Katoh & Atsushi Takizawa, 2018. "The mixed evacuation problem," Journal of Combinatorial Optimization, Springer, vol. 36(4), pages 1299-1314, November.
    13. Amirmahdi Tafreshian & Neda Masoud & Yafeng Yin, 2020. "Frontiers in Service Science: Ride Matching for Peer-to-Peer Ride Sharing: A Review and Future Directions," Service Science, INFORMS, vol. 12(2-3), pages 44-60, June.
    14. Prabhjot Kaur & Anuj Sharma & Vanita Verma & Kalpana Dahiya, 2022. "An alternate approach to solve two-level hierarchical time minimization transportation problem," 4OR, Springer, vol. 20(1), pages 23-61, March.
    15. Adam N. Letchford, 2000. "Separating a Superclass of Comb Inequalities in Planar Graphs," Mathematics of Operations Research, INFORMS, vol. 25(3), pages 443-454, August.
    16. Hitoshi Hayakawa, 2014. "Complexity of Payment Network," CARF F-Series CARF-F-345, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    17. Ravindra K. Ahuja & Dorit S. Hochbaum, 2008. "TECHNICAL NOTE---Solving Linear Cost Dynamic Lot-Sizing Problems in O ( n log n ) Time," Operations Research, INFORMS, vol. 56(1), pages 255-261, February.
    18. Ons Sassi & Ammar Oulamara, 2017. "Electric vehicle scheduling and optimal charging problem: complexity, exact and heuristic approaches," International Journal of Production Research, Taylor & Francis Journals, vol. 55(2), pages 519-535, January.
    19. Sharma, Anuj & Verma, Vanita & Kaur, Prabhjot & Dahiya, Kalpana, 2015. "An iterative algorithm for two level hierarchical time minimization transportation problem," European Journal of Operational Research, Elsevier, vol. 246(3), pages 700-707.
    20. P. Chardaire & A. Lisser, 2002. "Simplex and Interior Point Specialized Algorithms for Solving Nonoriented Multicommodity Flow Problems," Operations Research, INFORMS, vol. 50(2), pages 260-276, April.

    More about this item

    Keywords

    HD28 .M414 no.3909-96;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mit:sloanp:2626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: None (email available below). General contact details of provider: https://edirc.repec.org/data/ssmitus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.