Advanced Search
MyIDEAS: Login to save this paper or follow this series

Forecast Content And Content Horizons For Some Important Macroeconomic Time Series

Contents:

Author Info

  • John W. Galbraith

    ()

  • Greg Tkacz

    ()

Abstract

For quantities that are approximately stationary, the information content of statistical forecasts tends to decline as the forecast horizon increases, and there exists a maximum horizon beyond which forecasts cannot provide discernibly more information about the variable than is present in the unconditional mean (the content horizon). The pattern of decay of forecast content (or skill) with increasing horizon is well known for many types of meteorological forecasts; by contrast, little generally-accepted information about these patterns or content horizons is available for economic variables. In this paper we attempt to develop more information of this type by estimating content horizons for variety of macroeconomic quantities; more generally, we characterize the pattern of decay of forecast content as we project farther into the future. We find wide variety of results for the different macroeconomic quantities, with models for some quantities providing useful content several years into the future, for other quantities providing negligible content beyond one or two months or quarters.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.mcgill.ca/files/economics/forecastcontentand.pdf
Download Restriction: no

Bibliographic Info

Paper provided by McGill University, Department of Economics in its series Departmental Working Papers with number 2007-01.

as in new window
Length: 20 pages
Date of creation: 2007
Date of revision:
Handle: RePEc:mcl:mclwop:2007-01

Contact details of provider:
Postal: 855 Sherbrooke St. W., Montréal, Québec, H3A 2T7
Phone: (514) 398-3030
Fax: (514) 398-4938
Web page: http://www.repec.mcgill.ca
More information through EDIRC

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Galbraith, John W. & KI[#x1e63]Inbay, Turgut, 2005. "Content horizons for conditional variance forecasts," International Journal of Forecasting, Elsevier, vol. 21(2), pages 249-260.
  2. Francis X. Diebold & Lutz Kilian, 1997. "Measuring Predictability: Theory and Macroeconomic Applications," NBER Technical Working Papers 0213, National Bureau of Economic Research, Inc.
  3. Marc Brisson & Bryan Campbell & John Galbraith, 2001. "Forecasting Some Low-Predictability Time Series Using Diffusion Indices," CIRANO Working Papers 2001s-46, CIRANO.
  4. Granger, Clive W. J. & Hyung, Namwon, 2004. "Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 399-421, June.
  5. Granger, Clive W J, 1996. "Can We Improve the Perceived Quality of Economic Forecasts?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 455-73, Sept.-Oct.
  6. Li Fuchun & Tkacz Greg, 2004. "Combining Forecasts with Nonparametric Kernel Regressions," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(4), pages 1-18, December.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. John Galbraith & Simon van Norden, 2008. "The Calibration Of Probabilistic Economic Forecasts," Departmental Working Papers 2008-05, McGill University, Department of Economics.
  2. John Galbraith & Simon van Norden, 2009. "Calibration and Resolution Diagnostics for Bank of England Density Forecasts," CIRANO Working Papers 2009s-36, CIRANO.
  3. de Bruijn, B. & Franses, Ph.H.B.F., 2011. "Evaluating the Rationality of Managers' Sales Forecasts," Econometric Institute Research Papers EI 2011-36, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  4. Lahiri, Kajal & Sheng, Xuguang, 2010. "Learning and heterogeneity in GDP and inflation forecasts," International Journal of Forecasting, Elsevier, vol. 26(2), pages 265-292, April.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:mcl:mclwop:2007-01. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Shama Rangwala) The email address of this maintainer does not seem to be valid anymore. Please ask Shama Rangwala to update the entry or send us the correct address.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.