IDEAS home Printed from https://ideas.repec.org/p/lvl/creacr/2012-3.html
   My bibliography  Save this paper

Reducing Automobile Dependency on Campus: Evaluating the Impact TDM Using Stated Preferences

Author

Listed:
  • Philippe Barla
  • Nathanaël Lapierre
  • Ricardo Alvarez Daziano
  • Markus Herrmann

Abstract

In this paper, we evaluate the potential impacts of travel demand management strategies to reduce the commuting mode share of automobiles using stated preference data. The analysis is carried out on members of Université Laval in Quebec City (Canada). We measure the impact of travel time and cost as well as attitudes toward automobile, public transit and the environment. We find elasticities with respect to time and cost parameters that are low implying that large changes are required to have a noticeable impact. We find however that combining several policy interventions is more effective. Policies aiming at reducing automobile dependency by changing attitudes do not appear to be particularly effective.

Suggested Citation

  • Philippe Barla & Nathanaël Lapierre & Ricardo Alvarez Daziano & Markus Herrmann, 2012. "Reducing Automobile Dependency on Campus: Evaluating the Impact TDM Using Stated Preferences," Cahiers de recherche CREATE 2012-3, CREATE.
  • Handle: RePEc:lvl:creacr:2012-3
    as

    Download full text from publisher

    File URL: https://www.create.ulaval.ca/sites/create.ulaval.ca/files/Publications/create2012-3.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Vredin Johansson, Maria & Heldt, Tobias & Johansson, Per, 2006. "The effects of attitudes and personality traits on mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(6), pages 507-525, July.
    2. Balsas, Carlos J. L., 2003. "Sustainable transportation planning on college campuses," Transport Policy, Elsevier, vol. 10(1), pages 35-49, January.
    3. Espino, Raquel & de Dios Ortúzar, Juan & Román, Concepción, 2007. "Understanding suburban travel demand: Flexible modelling with revealed and stated choice data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(10), pages 899-912, December.
    4. Kevin Washbrook & Wolfgang Haider & Mark Jaccard, 2006. "Estimating commuter mode choice: A discrete choice analysis of the impact of road pricing and parking charges," Transportation, Springer, vol. 33(6), pages 621-639, November.
    5. Albert, Gila & Mahalel, David, 2006. "Congestion tolls and parking fees: A comparison of the potential effect on travel behavior," Transport Policy, Elsevier, vol. 13(6), pages 496-502, November.
    6. Bilbao Ubillos, J. & Fernández Sainz, A., 2004. "The influence of quality and price on the demand for urban transport: the case of university students," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(8), pages 607-614, October.
    7. Ben-Akiva, Moshe & McFadden, Daniel & Train, Kenneth & Börsch-Supan, Axel, 2002. "Hybrid Choice Models: Progress and Challenges," Sonderforschungsbereich 504 Publications 02-29, Sonderforschungsbereich 504, Universität Mannheim;Sonderforschungsbereich 504, University of Mannheim.
    8. Brown, Jeffrey & Hess, Daniel Baldwin & Shoup, Donald, 2003. "Fare-Free Public Transit at Universities: An Evaluation," University of California Transportation Center, Working Papers qt3rt6d1hz, University of California Transportation Center.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rotaris, Lucia & Danielis, Romeo, 2015. "Commuting to college: The effectiveness and social efficiency of transportation demand management policies," Transport Policy, Elsevier, vol. 44(C), pages 158-168.
    2. Boisvert, Marie-Francis, 2014. "Using Mobile Application Data, Population Size, Accessibility, and Value Judgements in Public Transit Improvements," SS-AAEA Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 2014, pages 1-12.
    3. Lehner, Stephan & Peer, Stefanie, 2019. "The price elasticity of parking: A meta-analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 177-191.
    4. Sottile, Eleonora & Giacchetti, Tommaso & Tuveri, Giovanni & Piras, Francesco & Calli, Daniele & Concas, Vittoria & Zamberlan, Leonardo & Meloni, Italo & Carrese, Stefano, 2021. "An innovative GPS smartphone based strategy for university mobility management: A case study at the University of RomaTre, Italy," Research in Transportation Economics, Elsevier, vol. 85(C).
    5. Rotaris, Lucia & Danielis, Romeo, 2014. "The impact of transportation demand management policies on commuting to college facilities: A case study at the University of Trieste, Italy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 127-140.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rotaris, Lucia & Danielis, Romeo, 2014. "The impact of transportation demand management policies on commuting to college facilities: A case study at the University of Trieste, Italy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 127-140.
    2. Ahmadi Azari, Kian & Arintono, Sulistyo & Hamid, Hussain & Rahmat, Riza Atiq O.K., 2013. "Modelling demand under parking and cordon pricing policy," Transport Policy, Elsevier, vol. 25(C), pages 1-9.
    3. Lehner, Stephan & Peer, Stefanie, 2019. "The price elasticity of parking: A meta-analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 177-191.
    4. Azari, Kian Ahmadi & Arintono, Sulistyo & Hamid, Hussain & Davoodi, Seyed Rasoul, 2013. "Evaluation of demand for different trip purposes under various congestion pricing scenarios," Journal of Transport Geography, Elsevier, vol. 29(C), pages 43-51.
    5. Alexandros Dimitropoulos, 2014. "The Influence of Environmental Concerns on Drivers’ Preferences for Electric Cars," Tinbergen Institute Discussion Papers 14-128/VIII, Tinbergen Institute.
    6. Dirk Temme & Marcel Paulssen & Till Dannewald, 2007. "Integrating latent variables in discrete choice models – How higher-order values and attitudes determine consumer choice," SFB 649 Discussion Papers SFB649DP2007-065, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    7. Ababio-Donkor, Augustus & Saleh, Wafaa & Fonzone, Achille, 2020. "The role of personal norms in the choice of mode for commuting," Research in Transportation Economics, Elsevier, vol. 83(C).
    8. Di Ciommo, Floridea & Monzón, Andrés & Fernandez-Heredia, Alvaro, 2013. "Improving the analysis of road pricing acceptability surveys by using hybrid models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 302-316.
    9. Andani, I Gusti Ayu & La Paix Puello, Lissy & Geurs, Karst, 2021. "Modelling effects of changes in travel time and costs of toll road usage on choices for residential location, route and travel mode across population segments in the Jakarta-Bandung region, Indonesia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 81-102.
    10. Yan Han & Wanying Li & Shanshan Wei & Tiantian Zhang, 2018. "Research on Passenger’s Travel Mode Choice Behavior Waiting at Bus Station Based on SEM-Logit Integration Model," Sustainability, MDPI, vol. 10(6), pages 1-23, June.
    11. Chakrabarti, Sandip, 2017. "How can public transit get people out of their cars? An analysis of transit mode choice for commute trips in Los Angeles," Transport Policy, Elsevier, vol. 54(C), pages 80-89.
    12. Jennifer Roberts & Gurleen Popli & Rosemary J. Harris, 2018. "Do environmental concerns affect commuting choices?: hybrid choice modelling with household survey data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(1), pages 299-320, January.
    13. Pan Shuangli & Zheng Guijun & Chen Qun, 2020. "The Psychological Decision-Making Process Model of Giving up Driving under Parking Constraints from the Perspective of Sustainable Traffic," Sustainability, MDPI, vol. 12(17), pages 1-19, September.
    14. Czajkowski, Mikołaj & Vossler, Christian A. & Budziński, Wiktor & Wiśniewska, Aleksandra & Zawojska, Ewa, 2017. "Addressing empirical challenges related to the incentive compatibility of stated preferences methods," Journal of Economic Behavior & Organization, Elsevier, vol. 142(C), pages 47-63.
    15. Khandker M. Nurul Habib & Md. Hamid Zaman, 2012. "Effects of incorporating latent and attitudinal information in mode choice models," Transportation Planning and Technology, Taylor & Francis Journals, vol. 35(5), pages 561-576, June.
    16. Ricardo Daziano & Denis Bolduc, 2013. "Covariance, identification, and finite-sample performance of the MSL and Bayes estimators of a logit model with latent attributes," Transportation, Springer, vol. 40(3), pages 647-670, May.
    17. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    18. Bergantino, Angela S. & Bierlaire, Michel & Catalano, Mario & Migliore, Marco & Amoroso, Salvatore, 2013. "Taste heterogeneity and latent preferences in the choice behaviour of freight transport operators," Transport Policy, Elsevier, vol. 30(C), pages 77-91.
    19. Abdelradi, Fadi & Abdu, Khaled, 2015. "Evaluation of consumers' lifestyles and willingness to pay for dates: A hybrid choice model approach," 143rd Joint EAAE/AAEA Seminar, March 25-27, 2015, Naples, Italy 202720, European Association of Agricultural Economists.
    20. Parmar, Janak & Saiyed, Gulnazbanu & Dave, Sanjaykumar, 2023. "Analysis of taste heterogeneity in commuters’ travel decisions using joint parking– and mode–choice model: A case from urban India," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).

    More about this item

    Keywords

    Mode choice; Stated preferences; Travel demand management;
    All these keywords.

    JEL classification:

    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise
    • R48 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Government Pricing and Policy
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lvl:creacr:2012-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Manuel Paradis (email available below). General contact details of provider: https://edirc.repec.org/data/calvlca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.