IDEAS home Printed from https://ideas.repec.org/p/lsg/lsgwps/wp99.html
   My bibliography  Save this paper

Knowledge versus technique in SO2-saving technological change: A comparative test using quantile regression with implications for greenhouse gas compliance

Author

Listed:
  • David Grover

Abstract

Greenhouse gas emission limits are a major source of technical and policy uncertainty for electric power industry professionals. This paper tries to reduce some of this uncertainty by investigating the main forces that were responsible for the productivity gains made by the electric power sector with respect to SO2 emissions under the US SO2 cap and trade program. The SO2 cap and trade experience has important parallels with the GHG pollution problem, in both policy design and technical response. Linear and quantile regression are used to compare the effect of new technical knowledge (R&D) on SO2 productivity, against the effect of pre-existing techniques that did not involve very much new knowledge creation. Compliance techniques that involved little new technical knowledge and which were incremental and pragmatic played the most important role in SO2-saving technological change. Implications of this finding for electric power plants� technical response to GHG pollution limits are elaborated.

Suggested Citation

  • David Grover, 2012. "Knowledge versus technique in SO2-saving technological change: A comparative test using quantile regression with implications for greenhouse gas compliance," GRI Working Papers 99, Grantham Research Institute on Climate Change and the Environment.
  • Handle: RePEc:lsg:lsgwps:wp99
    as

    Download full text from publisher

    File URL: http://www.lse.ac.uk/GranthamInstitute/wp-content/uploads/2014/02/WP99-so2-technological-change-greenhouse-gas-compliance.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2003. "Chapter 11 Technological change and the environment," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 1, chapter 11, pages 461-516, Elsevier.
    2. William Brock & M. Taylor, 2010. "The Green Solow model," Journal of Economic Growth, Springer, vol. 15(2), pages 127-153, June.
    3. Joshua Linn, 2008. "Energy Prices and the Adoption of Energy-Saving Technology," Economic Journal, Royal Economic Society, vol. 118(533), pages 1986-2012, November.
    4. Nadiri, M Ishaq & Prucha, Ingmar R, 1996. "Estimation of the Depreciation Rate of Physical and R&D Capital in the U.S. Total Manufacturing Sector," Economic Inquiry, Western Economic Association International, vol. 34(1), pages 43-56, January.
    5. Burtraw, Dallas & Palmer, Karen L., 2003. "The Paparazzi Take a Look at a Living Legend: The SO2 Cap-and-Trade Program for Power Plants in the United States," Discussion Papers 10665, Resources for the Future.
    6. Massimiliano Mazzanti & Anna Montini & Roberto Zoboli, 2007. "Economic Dynamics, Emission Trends and the EKC Hypothesis New Evidence Using NAMEA and Provincial Panel Data for Italy," Working Papers 2007.24, Fondazione Eni Enrico Mattei.
    7. Arik Levinson, 2009. "Technology, International Trade, and Pollution from US Manufacturing," American Economic Review, American Economic Association, vol. 99(5), pages 2177-2192, December.
    8. Popp, David, 2006. "International innovation and diffusion of air pollution control technologies: the effects of NOX and SO2 regulation in the US, Japan, and Germany," Journal of Environmental Economics and Management, Elsevier, vol. 51(1), pages 46-71, January.
    9. Stern, David I., 2002. "Explaining changes in global sulfur emissions: an econometric decomposition approach," Ecological Economics, Elsevier, vol. 42(1-2), pages 201-220, August.
    10. Richard Schmalensee & Paul L. Joskow & A. Denny Ellerman & Juan Pablo Montero & Elizabeth M. Bailey, 1998. "An Interim Evaluation of Sulfur Dioxide Emissions Trading," Journal of Economic Perspectives, American Economic Association, vol. 12(3), pages 53-68, Summer.
    11. Popp, David C., 2001. "The effect of new technology on energy consumption," Resource and Energy Economics, Elsevier, vol. 23(3), pages 215-239, July.
    12. Richard G. Newell & Adam B. Jaffe & Robert N. Stavins, 1999. "The Induced Innovation Hypothesis and Energy-Saving Technological Change," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(3), pages 941-975.
    13. Seskin, Eugene P. & Anderson, Robert Jr. & Reid, Robert O., 1983. "An empirical analysis of economic strategies for controlling air pollution," Journal of Environmental Economics and Management, Elsevier, vol. 10(2), pages 112-124, June.
    14. Giovanni Peri, 2005. "Determinants of Knowledge Flows and Their Effect on Innovation," The Review of Economics and Statistics, MIT Press, vol. 87(2), pages 308-322, May.
    15. Richard Perkins & Eric Neumayer, 2008. "Fostering Environment Efficiency through Transnational Linkages? Trajectories of CO2 and SO2, 1980–2000," Environment and Planning A, , vol. 40(12), pages 2970-2989, December.
    16. Sue Wing, Ian, 2006. "Representing induced technological change in models for climate policy analysis," Energy Economics, Elsevier, vol. 28(5-6), pages 539-562, November.
    17. René Kemp, 1997. "Environmental Policy and Technical Change," Books, Edward Elgar Publishing, number 1187.
    18. Yaisawarng, Suthathip & Klein, J Douglass, 1994. "The Effects of Sulfur Dioxide Controls on Productivity Change in the U.S. Electric Power Industry," The Review of Economics and Statistics, MIT Press, vol. 76(3), pages 447-460, August.
    19. Joskow, Paul L & Schmalensee, Richard, 1998. "The Political Economy of Market-Based Environmental Policy: The U.S. Acid Rain Program," Journal of Law and Economics, University of Chicago Press, vol. 41(1), pages 37-83, April.
    20. Sue Wing, Ian, 2008. "Explaining the declining energy intensity of the U.S. economy," Resource and Energy Economics, Elsevier, vol. 30(1), pages 21-49, January.
    21. David Popp, 2010. "Exploring Links Between Innovation and Diffusion: Adoption of NO X Control Technologies at US Coal-fired Power Plants," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(3), pages 319-352, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grover, David, 2013. "The ‘advancedness’ of knowledge in pollution-saving technological change with a qualitative application to SO2 cap and trade," Ecological Economics, Elsevier, vol. 89(C), pages 123-134.
    2. David Grover, 2012. "The �advancedness� of knowledge in pollutionsaving technological change with a qualitative application to SO2 cap and trade," GRI Working Papers 100, Grantham Research Institute on Climate Change and the Environment.
    3. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    4. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
    5. Stavins, Robert & Jaffe, Adam & Newell, Richard, 2000. "Technological Change and the Environment," Working Paper Series rwp00-002, Harvard University, John F. Kennedy School of Government.
    6. Cantono, Simona, 2012. "Unveiling diffusion dynamics: an autocatalytic percolation model of environmental innovation diffusion and the optimal dynamic path of adoption subsidies," Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio 201222, University of Turin.
    7. Baker, Erin & Shittu, Ekundayo, 2008. "Uncertainty and endogenous technical change in climate policy models," Energy Economics, Elsevier, vol. 30(6), pages 2817-2828, November.
    8. Verdolini, Elena & Galeotti, Marzio, 2011. "At home and abroad: An empirical analysis of innovation and diffusion in energy technologies," Journal of Environmental Economics and Management, Elsevier, vol. 61(2), pages 119-134, March.
    9. Pizer, William A. & Popp, David, 2008. "Endogenizing technological change: Matching empirical evidence to modeling needs," Energy Economics, Elsevier, vol. 30(6), pages 2754-2770, November.
    10. Naqvi, Asjad & Stockhammer, Engelbert, 2018. "Directed Technological Change in a Post-Keynesian Ecological Macromodel," Ecological Economics, Elsevier, vol. 154(C), pages 168-188.
    11. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2003. "Chapter 11 Technological change and the environment," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 1, chapter 11, pages 461-516, Elsevier.
    12. Claudia Ghisetti & Francesco Quatraro, 2014. "Is green knowledge improving environmental productivity? Sectoral Evidence from Italian Regions," SEEDS Working Papers 1014, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised May 2014.
    13. Herman, Kyle S. & Xiang, Jun, 2019. "Induced innovation in clean energy technologies from foreign environmental policy stringency?," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 198-207.
    14. Gamtessa, Samuel & Olani, Adugna Berhanu, 2018. "Energy price, energy efficiency, and capital productivity: Empirical investigations and policy implications," Energy Economics, Elsevier, vol. 72(C), pages 650-666.
    15. Steinbuks, Jevgenijs & Neuhoff, Karsten, 2014. "Assessing energy price induced improvements in efficiency of capital in OECD manufacturing industries," Journal of Environmental Economics and Management, Elsevier, vol. 68(2), pages 340-356.
    16. Sue Wing, Ian, 2008. "Explaining the declining energy intensity of the U.S. economy," Resource and Energy Economics, Elsevier, vol. 30(1), pages 21-49, January.
    17. Raphael Calel, 2020. "Adopt or Innovate: Understanding Technological Responses to Cap-and-Trade," American Economic Journal: Economic Policy, American Economic Association, vol. 12(3), pages 170-201, August.
    18. Adam B. Jaffe & Richard G. Newell & Robert N. Stavins, 2004. "Technology Policy for Energy and the Environment," NBER Chapters, in: Innovation Policy and the Economy, Volume 4, pages 35-68, National Bureau of Economic Research, Inc.
    19. Felix Groba & Barbara Breitschopf, 2013. "Impact of Renewable Energy Policy and Use on Innovation: A Literature Review," Discussion Papers of DIW Berlin 1318, DIW Berlin, German Institute for Economic Research.
    20. Francesco Vona & Francesco Nicolli & Lionel Nesta, 2012. "Determinants of renewable energy innovation: environmental policies vs. market regulation," Sciences Po publications 2012-05, Sciences Po.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lsg:lsgwps:wp99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: The GRI Administration (email available below). General contact details of provider: https://edirc.repec.org/data/grlseuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.