Advanced Search
MyIDEAS: Login to save this paper or follow this series

Adaptive Learning in Stochastic Nonlinear Models When Shocks Follow a Markov Chain


Author Info

  • Seppo Honkapohja

    (University of Helsinki)

  • Kaushik Mitra

    (Royal Holloway College, University of London)


Local convergence results for adaptive learning of stochastic steady states in nonlinear models are extended to the case where the exogenous observable variables follow a ?nite Markov chain. The stability conditions for the corresponding nonstochastic model and its steady states yield convergence for the stochastic model when shocks are suf?ciently small. The results are applied to asset pricing and to an overlapping generations model. Large shocks can destabilize learning even if the steady state is stable with small shocks.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL:
Download Restriction: no

Bibliographic Info

Paper provided by University of Copenhagen. Department of Economics in its series Discussion Papers with number 03-22.

as in new window
Length: 14 pages
Date of creation:
Date of revision: Apr 2003
Handle: RePEc:kud:kuiedp:0322

Contact details of provider:
Postal: Øster Farimagsgade 5, Building 26, DK-1353 Copenhagen K., Denmark
Phone: (+45) 35 32 30 10
Fax: +45 35 32 30 00
Web page:
More information through EDIRC

Related research

Keywords: bounded rationality; recursive algorithms; steady state; linearization; asset pricing; overlapping generations;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:


No references listed on IDEAS
You can help add them by filling out this form.



This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


Access and download statistics


When requesting a correction, please mention this item's handle: RePEc:kud:kuiedp:0322. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Hoffmann).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.