Advanced Search
MyIDEAS: Login to save this paper or follow this series

Forecasting Volatility under Fractality, Regime-Switching, Long Memory and Student-t Innovations

Contents:

Author Info

  • Thomas Lux
  • Leonardo Morales-Arias

Abstract

We examine the performance of volatility models that incorporate features such as long (short) memory, regime-switching and multifractality along with two competing distributional assumptions of the error component, i.e. Normal vs Student-t. Our precise contribution is twofold. First, we introduce a new model to the family of Markov-Switching Multifractal models of asset returns (MSM), namely, the Markov-Switching Multifractal model of asset returns with Student-t innovations (MSM-t). Second, we perform a comprehensive panel forecasting analysis of the MSM models as well as other competing volatility models of the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) legacy. Our cross-sections consist of all-share equity indices, bond indices and real estate security indices at the country level. Furthermore, we investigate complementarities between models via combined forecasts. We find that: (i) Maximum Likelihood (ML) and Generalized Method of Moments (GMM) estimation are both suitable for MSM-t models, (ii) empirical panel forecasts of MSM-t models show an improvement over the alternative volatility models in terms of mean absolute forecast errors and that (iii) forecast combinations obtained from the different MSM and (FI)GARCH models considered appear to provide some improvement upon forecasts from single models

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: https://www.ifw-members.ifw-kiel.de/publications/forecasting-volatility-under-fractality-regime-switching-long-memory-and-student-t-innovations/kwp_1532.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Kiel Institute for the World Economy in its series Kiel Working Papers with number 1532.

as in new window
Length: 35 pages
Date of creation: Jul 2009
Date of revision:
Handle: RePEc:kie:kieliw:1532

Contact details of provider:
Postal: Kiellinie 66, D-24105 Kiel
Phone: +49 431 8814-1
Fax: +49 431 85853
Email:
Web page: http://www.ifw-kiel.de
More information through EDIRC

Related research

Keywords: Multiplicative volatility models; long memory; Student-t innovations; international volatility forecasting;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Janczura, Joanna & Weron, Rafal, 2010. "Goodness-of-fit testing for regime-switching models," MPRA Paper 22871, University Library of Munich, Germany.
  2. Ruipeng Liu & Thomas Lux, 2010. "Flexible and Robust Modelling of Volatility Comovements: A Comparison of Two Multifractal Models," Kiel Working Papers 1594, Kiel Institute for the World Economy.
  3. Kwan, Wilson & Li, Wai Keung & Li, Guodong, 2012. "On the estimation and diagnostic checking of the ARFIMA–HYGARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3632-3644.
  4. Adnen Ben Nasr & Ahdi N. Ajmi & Rangan Gupta, 2013. "Modeling the Volatility of the Dow Jones Islamic Market World Index Using a Fractionally Integrated Time Varying GARCH (FITVGARCH) Model," Working Papers 201357, University of Pretoria, Department of Economics.
  5. Joanna Janczura & Rafał Weron, 2013. "Goodness-of-fit testing for the marginal distribution of regime-switching models with an application to electricity spot prices," AStA Advances in Statistical Analysis, Springer, vol. 97(3), pages 239-270, July.
  6. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
  7. Diniz, Ana & Barreiros, João & Crato, Nuno, 2012. "A new model for explaining long-range correlations in human time interval production," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1908-1919.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:kie:kieliw:1532. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dieter Stribny).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.