IDEAS home Printed from https://ideas.repec.org/p/kau/wpaper/201101.html
   My bibliography  Save this paper

Modeling Directions of Technical Change in Agricultural Sector

Author

Listed:
  • Orachos Napasintuwong Artachinda

    (Department of Agricultural and Resource Economics,Faculty of Economics,Kasetsart University,Thailand)

Abstract

This paper reviews the economic models explaining the directions of technical change. The application to agricultural sector is also explored. The induced innovation model extensively used in agricultural development studies has left unexplained stylized facts in several empirical evidences. This leads to the motivation of this paper to find an alternative model. While the induced innovation relies heavily on the change of relative factor price on biased technical change, the directed technical change model developed by Acemoglu (2002, 2007, 2009) endogenizes investment on research and explains the incentives of technology monopolists. The directed technical change model is developed and applied to agricultural sector. Given a hypothetical situation of increasing relative scarce agricultural labor, the model provides insights of which the policy direction for technical change in agricultural sector can be expected.

Suggested Citation

  • Orachos Napasintuwong Artachinda, 2011. "Modeling Directions of Technical Change in Agricultural Sector," Working Papers 201101, Kasetsart University, Department of Agricultural and Resource Economics.
  • Handle: RePEc:kau:wpaper:201101
    as

    Download full text from publisher

    File URL: http://agri.eco.ku.ac.th/RePEc/kau/wpaper/are201101.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Binswanger, Hans P, 1974. "The Measurement of Technical Change Biases with Many Factors of Production," American Economic Review, American Economic Association, vol. 64(6), pages 964-976, December.
    2. Reto Foellmi & Josef Zweimuller, 2006. "Income Distribution and Demand-Induced Innovations," Review of Economic Studies, Oxford University Press, vol. 73(4), pages 941-960.
    3. Binswanger, Hans P, 1974. "A Microeconomic Approach to Induced Innovation," Economic Journal, Royal Economic Society, vol. 84(336), pages 940-958, December.
    4. Oscar Afonso, 2006. "Skill-biased technological knowledge without scale effects," Applied Economics, Taylor & Francis Journals, vol. 38(1), pages 13-21.
    5. G. M.P. Swann, 2009. "The Economics of Innovation," Books, Edward Elgar Publishing, number 13211.
    6. Matthias Weiss, 2009. "On the evolution of wage inequality in Acemoglu's model of directed technical change," Applied Economics Letters, Taylor & Francis Journals, vol. 16(6), pages 591-595.
    7. Thirtle, Colin & Townsend, Robert & van Zyl, Johan, 1995. "Testing the induced innovation hypothesis in South African agriculture (an error correction approach)," Policy Research Working Paper Series 1547, The World Bank.
    8. Roberto Esposti, 2003. "Public R&D investment and cost structure in Italian agriculture, 1960--1995," European Review of Agricultural Economics, Foundation for the European Review of Agricultural Economics, vol. 30(4), pages 509-537, December.
    9. William Fellner, 1971. "Empirical Support for the Theory of Induced Innovations," The Quarterly Journal of Economics, Oxford University Press, vol. 85(4), pages 580-604.
    10. Yucan Liu & C. Richard Shumway, 2009. "Induced Innovation in U.S. Agriculture: Time-series, Direct Econometric, and Nonparametric Tests," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 91(1), pages 224-236.
    11. Francisco L. Rivera-Batiz & Luis A. Rivera-Batiz, 2018. "Economic Integration and Endogenous Growth," World Scientific Book Chapters, in: Francisco L Rivera-Batiz & Luis A Rivera-Batiz (ed.), International Trade, Capital Flows and Economic Development, chapter 1, pages 3-32, World Scientific Publishing Co. Pte. Ltd..
    12. Y. Khatri & C. Thirtle & R. Townsend, 1998. "Testing The Induced Innovation Hypothesis: An Application to UK Agriculture, 1953-90," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 6(1), pages 1-28.
    13. Fernando S. Machado, 1995. "Testing The Induced Innovation Hypothesis Using Cointegration Analysis," Journal of Agricultural Economics, Wiley Blackwell, vol. 46(3), pages 349-360, September.
    14. Otto, Vincent M. & Löschel, Andreas & Reilly, John, 2008. "Directed technical change and differentiation of climate policy," Energy Economics, Elsevier, vol. 30(6), pages 2855-2878, November.
    15. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
    16. Carlo Carraro, Emanuele Massetti, Lea Nicita, 2009. "How Does Climate Policy Affect Technical Change? An Analysis of the Direction and Pace of Technical Progress in a Climate-Economy Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    17. Isabelle Armanville & Peter Funk, 2003. "Induced innovation: an empirical test," Applied Economics, Taylor & Francis Journals, vol. 35(15), pages 1627-1647.
    18. Daron Acemoglu, 2002. "Directed Technical Change," Review of Economic Studies, Oxford University Press, vol. 69(4), pages 781-809.
    19. Olmstead, Alan L & Rhode, Paul, 1993. "Induced Innovation in American Agriculture: A Reconsideration," Journal of Political Economy, University of Chicago Press, vol. 101(1), pages 100-118, February.
    20. Kawagoe, Toshihiko & Otsuka, Keijiro & Hayami, Yujiro, 1986. "Induced Bias of Technical Change in Agriculture: The United States and Japan, 1880-1980," Journal of Political Economy, University of Chicago Press, vol. 94(3), pages 523-544, June.
    21. Colin G. Thirtle & David E. Schimmelpfennig & Robert E Townsend, 2002. "Induced Innovation in United States Agriculture, 1880–1990: Time Series Tests and an Error Correction Model," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(3), pages 598-614.
    22. Qinghua Liu & C. Richard Shumway, 2006. "Geographic aggregation and induced innovation in American agriculture," Applied Economics, Taylor & Francis Journals, vol. 38(6), pages 671-682.
    23. Guido Cozzi & Giammario Impullitti, 2010. "Government Spending Composition, Technical Change, and Wage Inequality," Journal of the European Economic Association, MIT Press, vol. 8(6), pages 1325-1358, December.
    24. Matthias Weiss, 2005. "On the Evolution of Wage Inequality in Acemoglu’s Model of Directed Technical Change," MEA discussion paper series 05099, Munich Center for the Economics of Aging (MEA) at the Max Planck Institute for Social Law and Social Policy.
    25. Hayami, Yujiro & Ruttan, V W, 1970. "Factor Prices and Technical Change in Agricultural Development: The United States and Japan, 1880-1960," Journal of Political Economy, University of Chicago Press, vol. 78(5), pages 1115-1141, Sept.-Oct.
    26. Afonso, Oscar, 2008. "The impact of government intervention on wage inequality without scale effects," Economic Modelling, Elsevier, vol. 25(2), pages 351-362, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yucan Liu & C. Richard Shumway, 2009. "Induced Innovation in U.S. Agriculture: Time-series, Direct Econometric, and Nonparametric Tests," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 91(1), pages 224-236.
    2. Shumway, C. Richard & Liu, Yucan, 2006. "Induced Innovation in the Agricultural Sector: Evidence From a State Panel," 2006 Annual meeting, July 23-26, Long Beach, CA 21089, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    3. Pardey, Philip G. & Alston, Julian M. & Ruttan, Vernon W., 2010. "The Economics of Innovation and Technical Change in Agriculture," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 939-984, Elsevier.
    4. Roberto Esposti & Pierpaolo Pierani, 2008. "Price-induced technical progress in Italian agriculture," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement, INRA Department of Economics, vol. 89(4), pages 5-28.
    5. Li, Jianqiang & Shan, Yaowen & Tian, Gary & Hao, Xiangchao, 2020. "Labor cost, government intervention, and corporate innovation: Evidence from China," Journal of Corporate Finance, Elsevier, vol. 64(C).
    6. Liu, Yucan & Shumway, C. Richard, 2009. "Induced innovation and marginal cost of new technology," Economics Letters, Elsevier, vol. 105(1), pages 106-109, October.
    7. Benson, Aaron & Shumway, C. Richard, 2005. "Induced Innovation or a Paradox of Environmental Regulation?," 2005 Annual meeting, July 24-27, Providence, RI 19450, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    8. Queiroz, Pedro & Fulginiti, Lilyan & Perrin, Richard, 2021. "Induced Innovation in South American Agriculture: Deforestation and Directed Technical Change," 2021 Conference, August 17-31, 2021, Virtual 315416, International Association of Agricultural Economists.
    9. Oscar Afonso & Ana Catarina Afonso, 2015. "Endogenous Growth Effects of Environmental Policies," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 62(5), pages 607-629, December.
    10. Liu, Qinghua & Shumway, C. Richard, 2003. "Induced Innovation Tests On Western American Agriculture: A Cointegration Analysis," 2003 Annual meeting, July 27-30, Montreal, Canada 22237, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    11. Baldi, Lucia & Casati, Dario, 2005. "Induced Innovation in Italy: An Error Correction Model for the Period 1968-2002," 2005 International Congress, August 23-27, 2005, Copenhagen, Denmark 24590, European Association of Agricultural Economists.
    12. Clark, J. Stephen & Cechura, Lukas, 2012. "Induced Innovation in Canadian Agriculture," 131st Seminar, September 18-19, 2012, Prague, Czech Republic 135783, European Association of Agricultural Economists.
    13. Wei Jin, 2012. "Can Technological Innovation Help China Take on Its Climate Responsibility? A Computable General Equilibrium Analysis," CAMA Working Papers 2012-51, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    14. Afonso, Oscar & Pinho, Mafalda, 2022. "How to reverse a negative asymmetric labor productivity shock in the European Union? A directed technical change analysis with fiscal and monetary policies," Mathematical Social Sciences, Elsevier, vol. 116(C), pages 47-67.
    15. Li, George Yunxiong & Ascani, Andrea & Iammarino, Simona, 2024. "The material basis of modern technologies. A case study on rare metals," Research Policy, Elsevier, vol. 53(1).
    16. Afonso, Óscar & Thompson, Maria, 2011. "Costly investment, complementarities and the skill premium," Economic Modelling, Elsevier, vol. 28(5), pages 2254-2262, September.
    17. Fernando S. Machado, 1995. "Testing The Induced Innovation Hypothesis Using Cointegration Analysis," Journal of Agricultural Economics, Wiley Blackwell, vol. 46(3), pages 349-360, September.
    18. Queiroz, P. & Silva, F.D.F. & Fulginiti, L., 2018. "How did technical change affect land use in Brazilian agriculture?," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277318, International Association of Agricultural Economists.
    19. Wei Jin & ZhongXiang Zhang, 2014. "Explaining the Slow Pace of Energy Technological Innovation: Why Market Conditions Matter," CCEP Working Papers 1401, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    20. Oscar Afonso, 2023. "Losers and losses of COVID-19: a directed technical change analysis with fiscal and monetary policies," Economic Change and Restructuring, Springer, vol. 56(3), pages 1777-1821, June.

    More about this item

    Keywords

    directed technical change; induced innovation;

    JEL classification:

    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kau:wpaper:201101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kanchana Sripruetkiat (email available below). General contact details of provider: https://edirc.repec.org/data/feckuth.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.