IDEAS home Printed from https://ideas.repec.org/p/jet/dpaper/dpaper487.html
   My bibliography  Save this paper

The emission reduction effect and economic impact of an energy tax vs. a carbon tax in China : a dynamic CGE model analysis

Author

Listed:
  • Zou, Lele
  • Xue, Jinjun
  • Fox, Alan
  • Meng, Bo
  • Shibata, Tsubasa

Abstract

Chinese government commits to reach its peak carbon emissions before 2030, which requires China to implement new policies. Using a CGE model, this study conducts simulation studies on the functions of an energy tax and a carbon tax and analyzes their effects on macro-economic indices. The Chinese economy is affected at an acceptable level by the two taxes. GDP will lose less than 0.8% with a carbon tax of 100, 50, or 10 RMB/ton CO2 or 5% of the delivery price of an energy tax. Thus, the loss of real disposable personal income is smaller. Compared with implementing a single tax, a combined carbon and energy tax induces more emission reductions with relatively smaller economic costs. With these taxes, the domestic competitiveness of energy intensive industries is improved. Additionally, we found that the sooner such taxes are launched, the smaller the economic costs and the more significant the achieved emission reductions.

Suggested Citation

  • Zou, Lele & Xue, Jinjun & Fox, Alan & Meng, Bo & Shibata, Tsubasa, 2015. "The emission reduction effect and economic impact of an energy tax vs. a carbon tax in China : a dynamic CGE model analysis," IDE Discussion Papers 487, Institute of Developing Economies, Japan External Trade Organization(JETRO).
  • Handle: RePEc:jet:dpaper:dpaper487
    as

    Download full text from publisher

    File URL: https://ir.ide.go.jp/?action=repository_action_common_download&item_id=37689&item_no=1&attribute_id=22&file_no=1
    File Function: First version, 2015
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bartocci, Anna & Pisani, Massimiliano, 2013. "“Green” fuel tax on private transportation services and subsidies to electric energy. A model-based assessment for the main European countries," Energy Economics, Elsevier, vol. 40(S1), pages 32-57.
    2. Zhang, ZhongXiang & Baranzini, Andrea, 2004. "What do we know about carbon taxes? An inquiry into their impacts on competitiveness and distribution of income," Energy Policy, Elsevier, vol. 32(4), pages 507-518, March.
    3. Jenkins, Jesse D., 2014. "Political economy constraints on carbon pricing policies: What are the implications for economic efficiency, environmental efficacy, and climate policy design?," Energy Policy, Elsevier, vol. 69(C), pages 467-477.
    4. Jiang, Zhujun & Shao, Shuai, 2014. "Distributional effects of a carbon tax on Chinese households: A case of Shanghai," Energy Policy, Elsevier, vol. 73(C), pages 269-277.
    5. Di Cosmo, Valeria & Hyland, Marie, 2013. "Carbon tax scenarios and their effects on the Irish energy sector," Energy Policy, Elsevier, vol. 59(C), pages 404-414.
    6. Wang, Xin & Li, Ji Feng & Zhang, Ya Xiong, 2011. "An analysis on the short-term sectoral competitiveness impact of carbon tax in China," Energy Policy, Elsevier, vol. 39(7), pages 4144-4152, July.
    7. Reyer Gerlagh & Bob van der Zwaan, 2006. "Options and Instruments for a Deep Cut in CO2 Emissions: Carbon Dioxide Capture or Renewables, Taxes or Subsidies?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 25-48.
    8. Fischer, Carolyn & Springborn, Michael, 2011. "Emissions targets and the real business cycle: Intensity targets versus caps or taxes," Journal of Environmental Economics and Management, Elsevier, vol. 62(3), pages 352-366.
    9. Fang, Guochang & Tian, Lixin & Fu, Min & Sun, Mei, 2013. "The impacts of carbon tax on energy intensity and economic growth – A dynamic evolution analysis on the case of China," Applied Energy, Elsevier, vol. 110(C), pages 17-28.
    10. Martin, Ralf & de Preux, Laure B. & Wagner, Ulrich J., 2014. "The impact of a carbon tax on manufacturing: Evidence from microdata," Journal of Public Economics, Elsevier, vol. 117(C), pages 1-14.
    11. Lu, Chuanyi & Tong, Qing & Liu, Xuemei, 2010. "The impacts of carbon tax and complementary policies on Chinese economy," Energy Policy, Elsevier, vol. 38(11), pages 7278-7285, November.
    12. Henrik Hammar, Asa Lofgren and Thomas Sterner, 2004. "Political Economy Obstacles to Fuel Taxation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 1-18.
    13. Lin, Boqiang & Li, Xuehui, 2011. "The effect of carbon tax on per capita CO2 emissions," Energy Policy, Elsevier, vol. 39(9), pages 5137-5146, September.
    14. Haufler, Andreas & Mardan, Mohammed, 2014. "Cross-border loss offset can fuel tax competition," Journal of Economic Behavior & Organization, Elsevier, vol. 106(C), pages 42-61.
    15. Ren, Shenggang & Yuan, Baolong & Ma, Xie & Chen, Xiaohong, 2014. "The impact of international trade on China׳s industrial carbon emissions since its entry into WTO," Energy Policy, Elsevier, vol. 69(C), pages 624-634.
    16. Chamon, Marcos & Liu, Kai & Prasad, Eswar, 2013. "Income uncertainty and household savings in China," Journal of Development Economics, Elsevier, vol. 105(C), pages 164-177.
    17. Ian W. H. Parry & Kenneth A. Small, 2005. "Does Britain or the United States Have the Right Gasoline Tax?," American Economic Review, American Economic Association, vol. 95(4), pages 1276-1289, September.
    18. Adam Rose & Dan Wei & Noah Dormady, 2011. "Regional macroeconomic assessment of the Pennsylvania Climate Action Plan," Regional Science Policy & Practice, Wiley Blackwell, vol. 3(4), pages 357-379, November.
    19. Johnson, Kenneth C., 2007. "Refunded emission taxes: A resolution to the cap-versus-tax dilemma for greenhouse gas regulation," Energy Policy, Elsevier, vol. 35(5), pages 3115-3118, May.
    20. Guo, Ju’e & Zhang, Zengkai & Meng, Lei, 2012. "China’s provincial CO2 emissions embodied in international and interprovincial trade," Energy Policy, Elsevier, vol. 42(C), pages 486-497.
    21. Meleo, Linda, 2014. "On the determinants of industrial competitiveness: The European Union emission trading scheme and the Italian paper industry," Energy Policy, Elsevier, vol. 74(C), pages 535-546.
    22. Douglas, Stratford & Nishioka, Shuichiro, 2012. "International differences in emissions intensity and emissions content of global trade," Journal of Development Economics, Elsevier, vol. 99(2), pages 415-427.
    23. Du, Jun & Liu, Xiaoxuan & Zhou, Ying, 2014. "State advances and private retreats? — Evidence of aggregate productivity decomposition in China," China Economic Review, Elsevier, vol. 31(C), pages 459-474.
    24. Zhou, Nan & Levine, Mark D. & Price, Lynn, 2010. "Overview of current energy-efficiency policies in China," Energy Policy, Elsevier, vol. 38(11), pages 6439-6452, November.
    25. Sterner, Thomas, 2007. "Fuel taxes: An important instrument for climate policy," Energy Policy, Elsevier, vol. 35(6), pages 3194-3202, June.
    26. Baek, Chulwoo & Jung, Euy-Young & Lee, Jeong-Dong, 2014. "Effects of regulation and economic environment on the electricity industry׳s competitiveness: A study based on OECD countries," Energy Policy, Elsevier, vol. 72(C), pages 120-128.
    27. MacKenzie, Ian A. & Ohndorf, Markus, 2012. "Cap-and-trade, taxes, and distributional conflict," Journal of Environmental Economics and Management, Elsevier, vol. 63(1), pages 51-65.
    28. Liang, Qiao-Mei & Fan, Ying & Wei, Yi-Ming, 2007. "Carbon taxation policy in China: How to protect energy- and trade-intensive sectors?," Journal of Policy Modeling, Elsevier, vol. 29(2), pages 311-333.
    29. Zhang, Kevin Honglin, 2014. "How does foreign direct investment affect industrial competitiveness? Evidence from China," China Economic Review, Elsevier, vol. 30(C), pages 530-539.
    30. Mazumder, Diya B., 2014. "Biofuel subsidies versus the gas tax: The carrot or the stick?," Energy Economics, Elsevier, vol. 44(C), pages 361-374.
    31. Ma, Hengyun & Oxley, Les & Gibson, John, 2009. "Substitution possibilities and determinants of energy intensity for China," Energy Policy, Elsevier, vol. 37(5), pages 1793-1804, May.
    32. Sterner, Thomas, 2012. "Distributional effects of taxing transport fuel," Energy Policy, Elsevier, vol. 41(C), pages 75-83.
    33. Ngan, H.W., 2010. "Electricity regulation and electricity market reforms in China," Energy Policy, Elsevier, vol. 38(5), pages 2142-2148, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xiaoyu & Yao, Xilong, 2020. "Can energy supply-side and demand-side policies for energy saving and emission reduction be synergistic?--- A simulated study on China's coal capacity cut and carbon tax," Energy Policy, Elsevier, vol. 138(C).
    2. Li, Meng & Gao, Yuning & Meng, Bo & Yang, Zhusong, 2021. "Managing the mitigation: Analysis of the effectiveness of target-based policies on China's provincial carbon emission and transfer," Energy Policy, Elsevier, vol. 151(C).
    3. Shuai Shi & Yu Jing & Cuixia Li, 2019. "Mitigation Effect of Carbon Emission Tax in Dairy Farming: An Empirical Study of Heilongjiang Province in China," Sustainability, MDPI, vol. 11(2), pages 1-16, January.
    4. Meng, Bo & Liu, Yu & Andrew, Robbie & Zhou, Meifang & Hubacek, Klaus & Xue, Jinjun & Peters, Glen & Gao, Yuning, 2018. "More than half of China’s CO2 emissions are from micro, small and medium-sized enterprises," Applied Energy, Elsevier, vol. 230(C), pages 712-725.
    5. Boqiang Lin & Zhijie Jia, 2020. "Supply control vs. demand control: why is resource tax more effective than carbon tax in reducing emissions?," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-13, December.
    6. Cao, Jing & Dai, Hancheng & Li, Shantong & Guo, Chaoyi & Ho, Mun & Cai, Wenjia & He, Jianwu & Huang, Hai & Li, Jifeng & Liu, Yu & Qian, Haoqi & Wang, Can & Wu, Libo & Zhang, Xiliang, 2021. "The general equilibrium impacts of carbon tax policy in China: A multi-model comparison," Energy Economics, Elsevier, vol. 99(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Genovaitė Liobikienė & Mindaugas Butkus & Kristina Matuzevičiūtė, 2019. "The Contribution of Energy Taxes to Climate Change Policy in the European Union (EU)," Resources, MDPI, vol. 8(2), pages 1-23, April.
    2. Wang, Qian & Hubacek, Klaus & Feng, Kuishuang & Wei, Yi-Ming & Liang, Qiao-Mei, 2016. "Distributional effects of carbon taxation," Applied Energy, Elsevier, vol. 184(C), pages 1123-1131.
    3. Lucia Rotaris & Alessandro Gardelli, 2018. "Carbon Tax acceptability: A comparative experimental analysis," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2018(1), pages 117-132.
    4. Sebastian Miller & Mauricio Vela, 2013. "Are Environmentally Related Taxes Effective?," Research Department Publications IDB-WP-467, Inter-American Development Bank, Research Department.
    5. Tirkaso, Wondmagegn Tafesse & Gren, Ing-Marie, 2020. "Road fuel demand and regional effects of carbon taxes in Sweden," Energy Policy, Elsevier, vol. 144(C).
    6. Rafaty, R. & Dolphin, G. & Pretis, F., 2020. "Carbon pricing and the elasticity of CO2 emissions," Cambridge Working Papers in Economics 20116, Faculty of Economics, University of Cambridge.
    7. Rafaty, Ryan & Dolphin, Geoffroy & Pretis, Felix, 2021. "Carbon Pricing and the Elasticity of CO2 Emissions," RFF Working Paper Series 21-33, Resources for the Future.
    8. Shu Mo & Ting Wang, 2022. "Synergistic Effects of International Oil Price Fluctuations and Carbon Tax Policies on the Energy–Economy–Environment System in China," IJERPH, MDPI, vol. 19(21), pages 1-17, October.
    9. Alberto Gago & Xavier Labandeira & Xiral López Otero, 2014. "A Panorama on Energy Taxes and Green Tax Reforms," Hacienda Pública Española / Review of Public Economics, IEF, vol. 208(1), pages 145-190, March.
    10. Yang, Mian & Fan, Ying & Yang, Fuxia & Hu, Hui, 2014. "Regional disparities in carbon dioxide reduction from China's uniform carbon tax: A perspective on interfactor/interfuel substitution," Energy, Elsevier, vol. 74(C), pages 131-139.
    11. Zhang, Kun & Xue, Mei-Mei & Feng, Kuishuang & Liang, Qiao-Mei, 2019. "The economic effects of carbon tax on China’s provinces," Journal of Policy Modeling, Elsevier, vol. 41(4), pages 784-802.
    12. Govinda R. Timilsina & Jing Cao & Mun Ho, 2018. "Carbon Tax For Achieving China’S Ndc: Simulations Of Some Design Features Using A Cge Model," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 9(03), pages 1-17, August.
    13. Galindo, Luis Miguel & Beltrán, Allan & Ferrer, Jimy & Alatorre, José Eduardo, 2017. "Efectos potenciales de un impuesto al carbono sobre el producto interno bruto en los países de América Latina: estimaciones preliminares e hipotéticas a partir de un metaanálisis y una función de tran," Documentos de Proyectos 41867, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    14. Bashir, Muhammad Farhan & MA, Benjiang & Shahbaz, Muhammad & Shahzad, Umer & Vo, Xuan Vinh, 2021. "Unveiling the heterogeneous impacts of environmental taxes on energy consumption and energy intensity: Empirical evidence from OECD countries," Energy, Elsevier, vol. 226(C).
    15. Runst, Petrik & Thonipara, Anita, 2020. "Dosis facit effectum why the size of the carbon tax matters: Evidence from the Swedish residential sector," Energy Economics, Elsevier, vol. 91(C).
    16. Silvia Tiezzi & Stefano F. Verde, 2017. "The signaling effect of gasoline taxes and its distributional implications," RSCAS Working Papers 2017/06, European University Institute.
    17. Di Cosmo, Valeria & Hyland, Marie, 2013. "Carbon tax scenarios and their effects on the Irish energy sector," Energy Policy, Elsevier, vol. 59(C), pages 404-414.
    18. Zhao, Jiaxin & Mattauch, Linus, 2022. "When standards have better distributional consequences than carbon taxes," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).
    19. Marian Zaharia & Aurelia Pătrașcu & Manuela Rodica Gogonea & Ana Tănăsescu & Constanța Popescu, 2017. "A Cluster Design on the Influence of Energy Taxation in Shaping the New EU-28 Economic Paradigm," Energies, MDPI, vol. 10(2), pages 1-21, February.
    20. Fang, Guochang & Tian, Lixin & Fu, Min & Sun, Mei, 2013. "The impacts of carbon tax on energy intensity and economic growth – A dynamic evolution analysis on the case of China," Applied Energy, Elsevier, vol. 110(C), pages 17-28.

    More about this item

    Keywords

    China; Energy policy; Environmental policy; Taxation; Climatic change; Econometric model; Economic conditions; Energy tax; Carbon tax; Climate change; CGE model; Energy intensive industry;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • J21 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Labor Force and Employment, Size, and Structure
    • K32 - Law and Economics - - Other Substantive Areas of Law - - - Energy, Environmental, Health, and Safety Law
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • C54 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Quantitative Policy Modeling
    • O44 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Environment and Growth

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jet:dpaper:dpaper487. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michitaka Imamitsu (email available below). General contact details of provider: https://edirc.repec.org/data/idegvjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.