Advanced Search
MyIDEAS: Login

Identification of Expected Outcomes in a Data Error Mixing Model with Multiplicative Mean Independence

Contents:

Author Info

  • Kreider, Brent
  • Pepper, John V.

Abstract

We consider the problem of identifying a mean outcome in corrupt sampling where the observed outcome is a mixture of the distribution of interest and some other distribution. We make two contributions to this literature. First, the statistical independence assumption maintained under contaminated sampling is relaxed to the weaker assumption that the outcome is mean independent of the mixing process. We then generalize this restriction to allow the two conditional means to differ by a known or bounded factor of proportionality. Second, in the special case of a binary outcome, we consider the possibility that draws from the alternative distribution are known to be erroneous, as might be the case in a mixture model of response error. We illustrate how these assumptions can be used to inform researchers about the population's use of illicit drugs in the presence of nonrandom reporting errors. In this application, we find that a response error model with multiplicative mean independence is easy to motivate and can have substantial identifying power.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.econ.iastate.edu/sites/default/files/publications/papers/paper_12496_06003.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Iowa State University, Department of Economics in its series Staff General Research Papers with number 12496.

as in new window
Length:
Date of creation: 02 Feb 2009
Date of revision:
Publication status: Published in Journal of Business & Economic Statistics, January 2011, vol. 29 no. 1, pp. 49-60
Handle: RePEc:isu:genres:12496

Contact details of provider:
Postal: Iowa State University, Dept. of Economics, 260 Heady Hall, Ames, IA 50011-1070
Phone: +1 515.294.6741
Fax: +1 515.294.0221
Email:
Web page: http://www.econ.iastate.edu
More information through EDIRC

Related research

Keywords:

Other versions of this item:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Molinari, Francesca, 2008. "Partial identification of probability distributions with misclassified data," Journal of Econometrics, Elsevier, vol. 144(1), pages 81-117, May.
  2. Frazis, Harley & Loewenstein, Mark A., 2003. "Estimating linear regressions with mismeasured, possibly endogenous, binary explanatory variables," Journal of Econometrics, Elsevier, vol. 117(1), pages 151-178, November.
  3. Kreider, Brent & Pepper, John V., 2003. "Inferring Disability Status from Corrupt Data," Staff General Research Papers 10228, Iowa State University, Department of Economics.
  4. E. Tamer & V. Chernozhukov & H. Hong, 2004. "Parameter Set Inference in a Class of Econometric Models," Econometric Society 2004 North American Winter Meetings 382, Econometric Society.
  5. Bound, John & Brown, Charles & Mathiowetz, Nancy, 2001. "Measurement error in survey data," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 59, pages 3705-3843 Elsevier.
  6. Bound, John & Burkhauser, Richard V., 1999. "Economic analysis of transfer programs targeted on people with disabilities," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 51, pages 3417-3528 Elsevier.
  7. Bound, John, 1991. "The Health and Earnings of Rejected Disability Insurance Applicants: Reply," American Economic Review, American Economic Association, vol. 81(5), pages 1427-34, December.
  8. Mark C. Berger & Dan A. Black & Frank A. Scott, 1998. "How Well Do We Measure Employer-Provided Health Insurance Coverage?," Contemporary Economic Policy, Western Economic Association International, vol. 16(3), pages 356-367, 07.
  9. Barron, John M & Berger, Mark C & Black, Dan A, 1997. "Employer Search, Training, and Vacancy Duration," Economic Inquiry, Western Economic Association International, vol. 35(1), pages 167-92, January.
  10. Bollinger, Christopher R., 1996. "Bounding mean regressions when a binary regressor is mismeasured," Journal of Econometrics, Elsevier, vol. 73(2), pages 387-399, August.
  11. Black, Dan & Sanders, Seth & Taylor, Lowell, 2003. "Measurement of Higher Education in the Census and Current Population Survey," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 545-554, January.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Gundersen, Craig & Kreider, Brent & Pepper, John V., 2011. "The Impact of the National School Lunch Program on Child Health: A Nonparametric Bounds Analysis," Staff General Research Papers 32720, Iowa State University, Department of Economics.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:isu:genres:12496. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Stephanie Bridges) The email address of this maintainer does not seem to be valid anymore. Please ask Stephanie Bridges to update the entry or send us the correct address.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.