Advanced Search
MyIDEAS: Login

Estimation of treatment effects with high-dimensional controls

Contents:

Author Info

  • Alexandre Belloni
  • Victor Chernozhukov

    ()
    (Institute for Fiscal Studies and MIT)

  • Christian Hansen

    (Institute for Fiscal Studies and Chicago GSB)

Abstract

We propose methods for inference on the average effect of a treatment on a scalar outcome in the presence of very many controls. Our setting is a partially linear regression model containing the treatment/policy variable and a large number p of controls or series terms, with p that is possibly much larger than the sample size n, but where only s << n unknown controls or series terms are needed to approximate the regression function accurately. The latter sparsity condition makes it possible to estimate the entire regression function as well as the average treatment effect by selecting an approximately the right set of controls using Lasso and related methods. We develop estimation and inference methods for the average treatment effect in this setting, proposing a novel "post double selection" method that provides attractive inferential and estimation properties. In our analysis, in order to cover realistic applications, we expressly allow for imperfect selection of the controls and account for the impact of selection errors on estimation and inference. In order to cover typical applications in economics, we employ the selection methods designed to deal with non-Gaussian and heteroscedastic disturbances. We illustrate the use of new methods with numerical simulations and an application to the effect of abortion on crime rates.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://cemmap.ifs.org.uk/wps/cwp4211.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Centre for Microdata Methods and Practice, Institute for Fiscal Studies in its series CeMMAP working papers with number CWP42/11.

as in new window
Length:
Date of creation: Dec 2011
Date of revision:
Handle: RePEc:ifs:cemmap:42/11

Contact details of provider:
Postal: The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE
Phone: (+44) 020 7291 4800
Fax: (+44) 020 7323 4780
Email:
Web page: http://cemmap.ifs.org.uk
More information through EDIRC

Order Information:
Postal: The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE
Email:

Related research

Keywords:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Kane, John, 1997. "Myth and measurement: The new economics of the minimum wage : David Card and Alan B. Krueger, New Jersey: Princeton University Press, 1995, x + 422," International Review of Economics & Finance, Elsevier, vol. 6(2), pages 219-222.
  2. A. Belloni & V. Chernozhukov & L. Wang, 2011. "Square-root lasso: pivotal recovery of sparse signals via conic programming," Biometrika, Biometrika Trust, vol. 98(4), pages 791-806.
  3. Newey, Whitney K., 1997. "Convergence rates and asymptotic normality for series estimators," Journal of Econometrics, Elsevier, vol. 79(1), pages 147-168, July.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:42/11. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Stephanie Seavers).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.