Advanced Search
MyIDEAS: Login to save this paper or follow this series

A flexible semiparametric model for time series

Contents:

Author Info

  • Degui Li
  • Oliver Linton

    ()
    (Institute for Fiscal Studies and Cambridge University)

  • Zudi Lu

Abstract

We consider approximating a multivariate regression function by an affine combination of one-dimensional conditional component regression functions. The weight parameters involved in the approximation are estimated by least squares on the first-stage nonparametric kernel estimates. We establish asymptotic normality for the estimated weights and the regression function in two cases: the number of the covariates is finite, and the number of the covariates is diverging. As the observations are assumed to be stationary and near epoch dependent, the approach in this paper is applicable to estimation and forecasting issues in time series analysis. Furthermore, the methods and results are augmented by a simulation study and illustrated by application in the analysis of the Australian annual mean temperature anomaly series. We also apply our methods to high frequency volatility forecasting, where we obtain superior results to parametric methods.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.cemmap.ac.uk/wps/cwp281212.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Centre for Microdata Methods and Practice, Institute for Fiscal Studies in its series CeMMAP working papers with number CWP28/12.

as in new window
Length:
Date of creation: Sep 2012
Date of revision:
Handle: RePEc:ifs:cemmap:28/12

Contact details of provider:
Postal: The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE
Phone: (+44) 020 7291 4800
Fax: (+44) 020 7323 4780
Email:
Web page: http://cemmap.ifs.org.uk
More information through EDIRC

Order Information:
Postal: The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE
Email:

Related research

Keywords: Asymptotic normality; model averaging; Nadaraya-Watson kernel estimation; near epoch dependence; semiparametric method.;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
  2. Yongmiao Hong, 2000. "Generalized spectral tests for serial dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(3), pages 557-574.
  3. Oliver Linton & E. Mammen & J. Nielsen, 1997. "The Existence and Asymptotic Properties of a Backfitting Projection Algorithm Under Weak Conditions," Cowles Foundation Discussion Papers 1160, Cowles Foundation for Research in Economics, Yale University.
  4. Oliver Linton, 2000. "Efficient estimation of generalized additive nonparametric regression models," LSE Research Online Documents on Economics 314, London School of Economics and Political Science, LSE Library.
  5. Liang, Hua & Zou, Guohua & Wan, Alan T. K. & Zhang, Xinyu, 2011. "Optimal Weight Choice for Frequentist Model Average Estimators," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1053-1066.
  6. Bruce E. Hansen, 2007. "Least Squares Model Averaging," Econometrica, Econometric Society, vol. 75(4), pages 1175-1189, 07.
  7. Terasvirta, Timo & Tjostheim, Dag & Granger, Clive W. J., 2010. "Modelling Nonlinear Economic Time Series," OUP Catalogue, Oxford University Press, number 9780199587155.
  8. Zudi Lu, 2001. "Asymptotic Normality of Kernel Density Estimators under Dependence," Annals of the Institute of Statistical Mathematics, Springer, vol. 53(3), pages 447-468, September.
  9. Linton, Oliver B. & Mammen, Enno, 2008. "Nonparametric transformation to white noise," Journal of Econometrics, Elsevier, vol. 142(1), pages 241-264, January.
  10. Andrews, Donald W.K., 1995. "Nonparametric Kernel Estimation for Semiparametric Models," Econometric Theory, Cambridge University Press, vol. 11(03), pages 560-586, June.
  11. Linton, Oliver & Sancetta, Alessio, 2009. "Consistent estimation of a general nonparametric regression function in time series," Journal of Econometrics, Elsevier, vol. 152(1), pages 70-78, September.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:28/12. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Stephanie Seavers).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.