IDEAS home Printed from https://ideas.repec.org/p/ieb/wpaper/doc2017-20.html
   My bibliography  Save this paper

Why do manufacturing industries invest in energy R&D?

Author

Listed:
  • María Teresa Costa-Campi

    (University of Barcelona & IEB)

  • Jose García-Quevedo

    (University of Barcelona & IEB)

Abstract

Energy R&D can have major social and economic impacts and is a critical factor in addressing the challenges presented by climate change mitigation policies. As well as the energy utilities themselves, firms in other sectors also invest in energy R&D; however, while various studies have examined the determinants of R&D in the former, there are no analyses of energy R&D drivers in other industries. This paper seeks to fill this gap by examining the determinants of investment in energy R&D in non-energy industries. We focus on manufacturing industries where we can differentiate between energy and non-energy R&D related expenditure. The empirical analysis is carried out for 21 sectors in Spain for the period 2008–2013. To overcome problems of data availability, we construct a comprehensive database from several surveys. The data show the importance of taking into account the efforts devoted to energy R&D by the manufacturing sectors in order to have more complete information about the total investment made in energy R&D. The results of the estimations indicate the importance of the energy R&D developed by firms that supply the energy utilities.

Suggested Citation

  • María Teresa Costa-Campi & Jose García-Quevedo, 2017. "Why do manufacturing industries invest in energy R&D?," Working Papers 2017/20, Institut d'Economia de Barcelona (IEB).
  • Handle: RePEc:ieb:wpaper:doc2017-20
    as

    Download full text from publisher

    File URL: http://ieb.ub.edu/wp-content/uploads/2018/04/2017-IEB-WorkingPaper-20.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nesta, Lionel & Vona, Francesco & Nicolli, Francesco, 2014. "Environmental policies, competition and innovation in renewable energy," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 396-411.
    2. Evens Salies, 2010. "A Test of the Schumpeterian Hypothesis in a Panel of European Electric Utilities," Chapters, in: Jean-Luc Gaffard & Evens Salies (ed.), Innovation, Economic Growth and the Firm, chapter 6, Edward Elgar Publishing.
    3. Jochen Markard & Bernhard Truffer & Dieter M. Imboden, 2004. "The Impacts of Market Liberalization on Innovation Processes in the Electricity Sector," Energy & Environment, , vol. 15(2), pages 201-214, March.
    4. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    5. Costa-Campi, M.T. & Duch-Brown, N. & García-Quevedo, J., 2014. "R&D drivers and obstacles to innovation in the energy industry," Energy Economics, Elsevier, vol. 46(C), pages 20-30.
    6. Paroma Sanyal & Suman Ghosh, 2013. "Product Market Competition and Upstream Innovation: Evidence from the U.S. Electricity Market Deregulation," The Review of Economics and Statistics, MIT Press, vol. 95(1), pages 237-254, March.
    7. Zvi Griliches, 1998. "Issues in Assessing the Contribution of Research and Development to Productivity Growth," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 17-45, National Bureau of Economic Research, Inc.
    8. Jamasb, Tooraj & Pollitt, Michael G., 2015. "Why and how to subsidise energy R+D: Lessons from the collapse and recovery of electricity innovation in the UK," Energy Policy, Elsevier, vol. 83(C), pages 197-205.
    9. Costa-Campi, María Teresa & García-Quevedo, José & Segarra, Agustí, 2015. "Energy efficiency determinants: An empirical analysis of Spanish innovative firms," Energy Policy, Elsevier, vol. 83(C), pages 229-239.
    10. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198.
    11. Sterlacchini, Alessandro, 2012. "Energy R&D in private and state-owned utilities: An analysis of the major world electric companies," Energy Policy, Elsevier, vol. 41(C), pages 494-506.
    12. Nesta, Lionel & Vona, Francesco & Nicolli, Francesco, 2014. "Environmental policies, competition and innovation in renewable energy," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 396-411.
    13. Cagno, Enrico & Ramirez-Portilla, Andres & Trianni, Andrea, 2015. "Linking energy efficiency and innovation practices: Empirical evidence from the foundry sector," Energy Policy, Elsevier, vol. 83(C), pages 240-256.
    14. Jean-Luc Gaffard & Evens Salies (ed.), 2010. "Innovation, Economic Growth and the Firm," Books, Edward Elgar Publishing, number 13101.
    15. Cohen, Wesley M., 2010. "Fifty Years of Empirical Studies of Innovative Activity and Performance," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 129-213, Elsevier.
    16. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935.
    17. Paroma Sanyal & Linda R. Cohen, 2009. "Powering Progress: Restructuring, Competition, and R&D in the U.S. Electric Utility Industry," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 41-80.
    18. Veugelers, Reinhilde, 2012. "Which policy instruments to induce clean innovating?," Research Policy, Elsevier, vol. 41(10), pages 1770-1778.
    19. Wiesenthal, Tobias & Leduc, Guillaume & Haegeman, Karel & Schwarz, Hans-Günther, 2012. "Bottom-up estimation of industrial and public R&D investment by technology in support of policy-making: The case of selected low-carbon energy technologies," Research Policy, Elsevier, vol. 41(1), pages 116-131.
    20. Costa-Campi, M.T. & García-Quevedo, J. & Martínez-Ros, E., 2017. "What are the determinants of investment in environmental R&D?," Energy Policy, Elsevier, vol. 104(C), pages 455-465.
    21. Staffan Jacobsson & Anna Bergek, 2004. "Transforming the energy sector: the evolution of technological systems in renewable energy technology," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 13(5), pages 815-849, October.
    22. Jamasb, Tooraj & Pollitt, Michael, 2008. "Liberalisation and R&D in network industries: The case of the electricity industry," Research Policy, Elsevier, vol. 37(6-7), pages 995-1008, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. María Teresa Costa‐Campi & Néstor Duch‐Brown & José García‐Quevedo, 2019. "Innovation strategies of energy firms," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 26(5), pages 1073-1085, September.
    2. Wang, Nan & Mogi, Gento, 2017. "Deregulation, market competition, and innovation of utilities: Evidence from Japanese electric sector," Energy Policy, Elsevier, vol. 111(C), pages 403-413.
    3. Costa-Campi, M.T. & Duch-Brown, N. & García-Quevedo, J., 2014. "R&D drivers and obstacles to innovation in the energy industry," Energy Economics, Elsevier, vol. 46(C), pages 20-30.
    4. Nesta, Lionel & Vona, Francesco & Nicolli, Francesco, 2014. "Environmental policies, competition and innovation in renewable energy," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 396-411.
    5. Costa-Campi, M.T. & Duch-Brown, N. & García-Quevedo, J., 2014. "R&D drivers and obstacles to innovation in the energy industry," Energy Economics, Elsevier, vol. 46(C), pages 20-30.
    6. Inglesi-Lotz, R., 2019. "Energy research and R&D indicators: An LMDI decomposition analysis for the IEA Big 5 in energy research," Energy Policy, Elsevier, vol. 133(C).
    7. Jamasb, Tooraj & Pollitt, Michael G., 2015. "Why and how to subsidise energy R+D: Lessons from the collapse and recovery of electricity innovation in the UK," Energy Policy, Elsevier, vol. 83(C), pages 197-205.
    8. Nesta, Lionel & Vona, Francesco & Nicolli, Francesco, 2014. "Environmental policies, competition and innovation in renewable energy," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 396-411.
    9. repec:hal:spmain:info:hdl:2441/f6h8764enu2lskk9p4oq2cqb0 is not listed on IDEAS
    10. Enrique Loredo & Nuria Lopez-Mielgo & Gustavo Pineiro-Villaverde & María Teresa García-Álvarez, 2019. "Utilities: Innovation and Sustainability," Sustainability, MDPI, vol. 11(4), pages 1-13, February.
    11. Rexhäuser, Sascha & Löschel, Andreas, 2015. "Invention in energy technologies: Comparing energy efficiency and renewable energy inventions at the firm level," Energy Policy, Elsevier, vol. 83(C), pages 206-217.
    12. Marino, Marianna & Parrotta, Pierpaolo & Valletta, Giacomo, 2019. "Electricity (de)regulation and innovation," Research Policy, Elsevier, vol. 48(3), pages 748-758.
    13. Costa-Campi, M.T. & García-Quevedo, J. & Martínez-Ros, E., 2017. "What are the determinants of investment in environmental R&D?," Energy Policy, Elsevier, vol. 104(C), pages 455-465.
    14. Nyga-Łukaszewska Honorata, 2016. "Selected Issues in Innovation in the Energy Industry. The Case of Poland," International Journal of Management and Economics, Warsaw School of Economics, Collegium of World Economy, vol. 50(1), pages 100-112, June.
    15. Nicolli, Francesco & Vona, Francesco, 2016. "Heterogeneous policies, heterogeneous technologies: The case of renewable energy," Energy Economics, Elsevier, vol. 56(C), pages 190-204.
    16. Sköld, David & Fornstedt, Helena & Lindahl, Marcus, 2018. "Dilution of innovation utility, reinforcing the reluctance towards the new: An upstream supplier perspective on a fragmented electricity industry," Energy Policy, Elsevier, vol. 116(C), pages 220-231.
    17. repec:hal:spmain:info:hdl:2441/4b9o704lm99vm9u7s9e6fdpp6r is not listed on IDEAS
    18. Agyeman, Stephen Duah & Lin, Boqiang, 2023. "Electricity industry (de)regulation and innovation in negative-emission technologies: How do market liberalization influences climate change mitigation?," Energy, Elsevier, vol. 270(C).
    19. Chakraborty, Pavel & Chatterjee, Chirantan, 2017. "Does environmental regulation indirectly induce upstream innovation? New evidence from India," Research Policy, Elsevier, vol. 46(5), pages 939-955.
    20. David Popp, 2019. "Environmental Policy and Innovation: A Decade of Research," NBER Working Papers 25631, National Bureau of Economic Research, Inc.
    21. Inkyoung Sun & So Young Kim, 2017. "Energy R&D towards Sustainability: A Panel Analysis of Government Budget for Energy R&D in OECD Countries (1974–2012)," Sustainability, MDPI, vol. 9(4), pages 1-18, April.
    22. Inglesi-Lotz, Roula, 2017. "Social rate of return to R&D on various energy technologies: Where should we invest more? A study of G7 countries," Energy Policy, Elsevier, vol. 101(C), pages 521-525.

    More about this item

    Keywords

    Energy R&D; energy demand; energy efficiency; panel data;
    All these keywords.

    JEL classification:

    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • O30 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - General
    • O38 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ieb:wpaper:doc2017-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/iebubes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.