Advanced Search
MyIDEAS: Login

Efficient and Optimal Capital Accumulation under a Non Renewable Resource Constraint

Contents:

Author Info

  • Amigues, Jean-Pierre
  • Moreaux, Michel

Abstract

Usual resource models with capital accumulation focus upon simple one to one process transforming output either into some consumption good or into some capitalgood. We consider a bisectoral model where the capital good, labor and a non renewable resource are used to produce the consumption good and the capital good. Capitalaccumulation is an irreversible process and capital is depreciating over time. In thisframework we reconsider the usual results of the efficient and optimal growth theoryunder an exhaustible resource constraint. We show that the efficiency conditions relatesto an investment function including the properties of the production functions of theboth sectors what cannot be shown neither in the monosectoral canonical model ofDasgupta and Heal nor in the fully disaggregated model of Dixit, Hammond and Heolwhich is disolving the sectoral structure of the economy. We show then that the standard Hotelling rule relating the growth rate of the consumption good to the growth rateof the marginal productivity of the resource in the consumption good sector remainsvalid independently of the multisectoral specification of the model. Last we exploredifferent forms of the Hartwick rule in the context of efficient paths and optimal paths.

(This abstract was borrowed from another version of this item.)

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://idei.fr/doc/wp/2008/capital_accumulation.pdf
File Function: Full text
Download Restriction: no

Bibliographic Info

Paper provided by Institut d'Économie Industrielle (IDEI), Toulouse in its series IDEI Working Papers with number 51.

as in new window
Length:
Date of creation: Nov 2008
Date of revision:
Publication status: Published in Revue d'Économie Politique, vol.�119, n°6, novembre 2008, p.�791-825.
Handle: RePEc:ide:wpaper:10018

Contact details of provider:
Postal: Manufacture des Tabacs, Aile Jean-Jacques Laffont, 21 Allée de Brienne, 31000 TOULOUSE
Phone: +33 (0)5 61 12 85 89
Fax: + 33 (0)5 61 12 86 37
Email:
Web page: http://www.idei.fr/
More information through EDIRC

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Cairns, Robert D. & Long, Ngo Van, 2006. "Maximin: a direct approach to sustainability," Environment and Development Economics, Cambridge University Press, vol. 11(03), pages 275-300, June.
  2. Pezzey, John C V & Withagen, Cees A, 1998. " The Rise, Fall and Sustainability of Capital-Resource Economies," Scandinavian Journal of Economics, Wiley Blackwell, vol. 100(2), pages 513-27, June.
  3. Michel, Philippe, 1982. "On the Transversality Condition in Infinite Horizon Optimal Problems," Econometrica, Econometric Society, vol. 50(4), pages 975-85, July.
  4. Heal, Geoffrey M., 1993. "The optimal use of exhaustible resources," Handbook of Natural Resource and Energy Economics, in: A. V. Kneese† & J. L. Sweeney (ed.), Handbook of Natural Resource and Energy Economics, edition 1, volume 3, chapter 18, pages 855-880 Elsevier.
  5. John Hartwick, 1976. "Intergenerational Equity and the Investing of Rents from Exhaustible Resources," Working Papers 220, Queen's University, Department of Economics.
  6. Dixit, Avinash & Hammond, Peter & Hoel, Michael, 1980. "On Hartwick's Rule for Regular Maximin Paths of Capital Accumulation and Resource Depletion," Review of Economic Studies, Wiley Blackwell, vol. 47(3), pages 551-56, April.
  7. Asheim, Geir B. & Buchholz, Wolfgang & Hartwick, John M. & Mitra, Tapan & Withagen, Cees, 2007. "Constant savings rates and quasi-arithmetic population growth under exhaustible resource constraints," Journal of Environmental Economics and Management, Elsevier, vol. 53(2), pages 213-229, March.
  8. Withagen, Cees & B. Asheim, Geir, 1998. "Characterizing sustainability: The converse of Hartwick's rule," Journal of Economic Dynamics and Control, Elsevier, vol. 23(1), pages 159-165, September.
  9. R. M. Solow, 1973. "Intergenerational Equity and Exhaustable Resources," Working papers 103, Massachusetts Institute of Technology (MIT), Department of Economics.
  10. Mitra, Tapan, 2000. "Intertemporal Equity and Efficient Allocation of Resources," Working Papers 00-12, Cornell University, Center for Analytic Economics.
  11. Cass, David, 1990. "Indefinitely sustained consumption despite exhaustible natural resources," CEPREMAP Working Papers (Couverture Orange) 9027, CEPREMAP.
  12. Mitra, Tapan, 1978. "Efficient growth with exhaustible resources in a neoclassical model," Journal of Economic Theory, Elsevier, vol. 17(1), pages 114-129, February.
  13. Michel, Philippe, 1990. "Some Clarifications on the Transversality Condition," Econometrica, Econometric Society, vol. 58(3), pages 705-23, May.
  14. Dasgupta, Swapan & Mitra, Tapan, 1983. "Intergenerational Equity and Efficient Allocation of Exhaustible Resources," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 24(1), pages 133-53, February.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:ide:wpaper:10018. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.