IDEAS home Printed from https://ideas.repec.org/p/hum/wpaper/sfb649dp2014-010.html
   My bibliography  Save this paper

Efficient Iterative Maximum Likelihood Estimation of High-Parameterized Time Series Models

Author

Listed:
  • Nikolaus Hautsch
  • Ostap Okhrin
  • Alexander Ristig

Abstract

We propose an iterative procedure to efficiently estimate models with complex log-likelihood functions and the number of parameters relative to the observations being potentially high. Given consistent but inefficient estimates of sub-vectors of the parameter vector, the procedure yields computationally tractable, consistent and asymptotic efficient estimates of all parameters. We show the asymptotic normality and derive the estimator's asymptotic covariance in dependence of the number of iteration steps. To mitigate the curse of dimensionality in high-parameterized models, we combine the procedure with a penalization approach yielding sparsity and reducing model complexity. Small sample properties of the estimator are illustrated for two time series models in a simulation study. In an empirical application, we use the proposed method to estimate the connectedness between companies by extending the approach by Diebold and Yilmaz (2014) to a high-dimensional non-Gaussian setting.

Suggested Citation

  • Nikolaus Hautsch & Ostap Okhrin & Alexander Ristig, 2014. "Efficient Iterative Maximum Likelihood Estimation of High-Parameterized Time Series Models," SFB 649 Discussion Papers SFB649DP2014-010, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  • Handle: RePEc:hum:wpaper:sfb649dp2014-010
    as

    Download full text from publisher

    File URL: http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2014-010.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    2. White,Halbert, 1996. "Estimation, Inference and Specification Analysis," Cambridge Books, Cambridge University Press, number 9780521574464, October.
    3. Taras Bodnar & Nikolaus Hautsch, 2012. "Copula-Based Dynamic Conditional Correlation Multiplicative Error Processes," SFB 649 Discussion Papers SFB649DP2012-044, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    4. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise," Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
    5. Robert Tibshirani, 2011. "Regression shrinkage and selection via the lasso: a retrospective," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(3), pages 273-282, June.
    6. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    7. Song, Peter X.K. & Fan, Yanqin & Kalbfleisch, John D., 2005. "Maximization by Parts in Likelihood Inference," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1145-1158, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bodnar, Taras & Hautsch, Nikolaus, 2016. "Dynamic conditional correlation multiplicative error processes," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 41-67.
    2. Mat'uv{s} Maciak & Ostap Okhrin & Michal Pev{s}ta, 2018. "Dynamic and granular loss reserving with copulae," Papers 1801.01792, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Härdle, Wolfgang Karl & Chen, Shi & Liang, Chong & Schienle, Melanie, 2018. "Time-varying Limit Order Book Networks," IRTG 1792 Discussion Papers 2018-016, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    2. Ostap Okhrin & Alexander Ristig & Jeffrey Sheen & Stefan Trück, 2015. "Conditional Systemic Risk with Penalized Copula," SFB 649 Discussion Papers SFB649DP2015-038, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    3. Lenka Zbonakova & Wolfgang Karl Härdle & Weining Wang, 2016. "Time Varying Quantile Lasso," SFB 649 Discussion Papers SFB649DP2016-047, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    4. Camila Epprecht & Dominique Guegan & Álvaro Veiga & Joel Correa da Rosa, 2017. "Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics," Post-Print halshs-00917797, HAL.
    5. Shi Chen & Wolfgang Karl Hardle & Brenda L'opez Cabrera, 2020. "Regularization Approach for Network Modeling of German Power Derivative Market," Papers 2009.09739, arXiv.org.
    6. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Risks, MDPI, vol. 6(2), pages 1-20, April.
    7. Bernardi, Mauro & Costola, Michele, 2019. "High-dimensional sparse financial networks through a regularised regression model," SAFE Working Paper Series 244, Leibniz Institute for Financial Research SAFE.
    8. Lee Anthony & Caron Francois & Doucet Arnaud & Holmes Chris, 2012. "Bayesian Sparsity-Path-Analysis of Genetic Association Signal using Generalized t Priors," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(2), pages 1-31, January.
    9. Sokbae Lee & Myung Hwan Seo & Youngki Shin, 2016. "The lasso for high dimensional regression with a possible change point," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 193-210, January.
    10. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    11. Jin, Shaobo & Moustaki, Irini & Yang-Wallentin, Fan, 2018. "Approximated penalized maximum likelihood for exploratory factor analysis: an orthogonal case," LSE Research Online Documents on Economics 88118, London School of Economics and Political Science, LSE Library.
    12. Jozef Barunik & Mattia Bevilacqua & Radu Tunaru, 2022. "Asymmetric Network Connectedness of Fears," The Review of Economics and Statistics, MIT Press, vol. 104(6), pages 1304-1316, November.
    13. Xing, Li-Min & Zhang, Yue-Jun, 2022. "Forecasting crude oil prices with shrinkage methods: Can nonconvex penalty and Huber loss help?," Energy Economics, Elsevier, vol. 110(C).
    14. Torri, Gabriele & Giacometti, Rosella & Tichý, Tomáš, 2021. "Network tail risk estimation in the European banking system," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    15. Bonaccolto, Giovanni & Caporin, Massimiliano & Maillet, Bertrand B., 2022. "Dynamic large financial networks via conditional expected shortfalls," European Journal of Operational Research, Elsevier, vol. 298(1), pages 322-336.
    16. Yudhie Andriyana & Rinda Fitriani & Bertho Tantular & Neneng Sunengsih & Kurnia Wahyudi & I Gede Nyoman Mindra Jaya & Annisa Nur Falah, 2023. "Modeling the Cigarette Consumption of Poor Households Using Penalized Zero-Inflated Negative Binomial Regression with Minimax Concave Penalty," Mathematics, MDPI, vol. 11(14), pages 1-13, July.
    17. Shaobo Jin & Irini Moustaki & Fan Yang-Wallentin, 2018. "Approximated Penalized Maximum Likelihood for Exploratory Factor Analysis: An Orthogonal Case," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 628-649, September.
    18. Lee, Kuo-Jung & Chen, Ray-Bing & Wu, Ying Nian, 2016. "Bayesian variable selection for finite mixture model of linear regressions," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 1-16.
    19. Ji, Qiang & Bouri, Elie & Kristoufek, Ladislav & Lucey, Brian, 2021. "Realised volatility connectedness among Bitcoin exchange markets," Finance Research Letters, Elsevier, vol. 38(C).
    20. Chen, Shi & Härdle, Wolfgang Karl & López Cabrera, Brenda, 2018. "Regularization Approach for Network Modeling of German Energy Market," IRTG 1792 Discussion Papers 2018-017, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".

    More about this item

    Keywords

    Multi-Step estimation; Sparse estimation; Multivariate time series; Maximum likelihood estimation; Copula;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hum:wpaper:sfb649dp2014-010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RDC-Team (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.