IDEAS home Printed from https://ideas.repec.org/p/hum/wpaper/sfb649dp2009-007.html
   My bibliography  Save this paper

Combination of multivariate volatility forecasts

Author

Listed:
  • Alessandra Amendola
  • Giuseppe Storti

Abstract

This paper proposes a novel approach to the combination of conditional covariance matrix forecasts based on the use of the Generalized Method of Moments (GMM). It is shown how the procedure can be generalized to deal with large dimensional systems by means of a two-step strategy. The finite sample properties of the GMM estimator of the combination weights are investigated by Monte Carlo simulations. Finally, in order to give an appraisal of the economic implications of the combined volatility predictor, the results of an application to tactical asset allocation are presented.

Suggested Citation

  • Alessandra Amendola & Giuseppe Storti, 2009. "Combination of multivariate volatility forecasts," SFB 649 Discussion Papers SFB649DP2009-007, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  • Handle: RePEc:hum:wpaper:sfb649dp2009-007
    as

    Download full text from publisher

    File URL: http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2009-007.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jagannathan, Ravi & Skoulakis, Georgios & Wang, Zhenyu, 2002. "Generalized Method of Moments: Applications in Finance," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 470-481, October.
    2. Torben G. Andersen & Tim Bollerslev & Nour Meddahi, 2005. "Correcting the Errors: Volatility Forecast Evaluation Using High-Frequency Data and Realized Volatilities," Econometrica, Econometric Society, vol. 73(1), pages 279-296, January.
    3. Jeff Fleming & Chris Kirby & Barbara Ostdiek, 2001. "The Economic Value of Volatility Timing," Journal of Finance, American Finance Association, vol. 56(1), pages 329-352, February.
    4. M. Hashem Pesaran & Paolo Zaffaroni, 2004. "Model Averaging and Value-at-Risk Based Evaluation of Large Multi Asset Volatility Models for Risk Management," CESifo Working Paper Series 1358, CESifo.
    5. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    6. Amendola, Alessandra & Storti, Giuseppe, 2008. "A GMM procedure for combining volatility forecasts," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3047-3060, February.
    7. Torben G. ANDERSEN & Tim BOLLERSLEV & Nour MEDDAHI, 2002. "Correcting The Errors : A Note On Volatility Forecast Evaluation Based On High-Frequency Data And Realized Volatilities," Cahiers de recherche 21-2002, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    8. Kristensen, Dennis & Linton, Oliver, 2006. "A Closed-Form Estimator For The Garch(1,1) Model," Econometric Theory, Cambridge University Press, vol. 22(2), pages 323-337, April.
    9. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    10. Storti, G., 2006. "Minimum distance estimation of GARCH(1,1) models," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1803-1821, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roland Strausz, 2009. "The Political Economy of Regulatory Risk," SFB 649 Discussion Papers SFB649DP2009-040, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    2. Caporin, Massimiliano & McAleer, Michael, 2014. "Robust ranking of multivariate GARCH models by problem dimension," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 172-185.
    3. Michał Grajek & Lars-Hendrik Röller, 2012. "Regulation and Investment in Network Industries: Evidence from European Telecoms," Journal of Law and Economics, University of Chicago Press, vol. 55(1), pages 189-216.
    4. Massimiliano Caporin & Michael McAleer, 2011. "Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation," Working Papers in Economics 11/23, University of Canterbury, Department of Economics and Finance.
    5. Barbara Choroś & Wolfgang Härdle & Ostap Okhrin, 2009. "CDO and HAC," SFB 649 Discussion Papers SFB649DP2009-038, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    6. Moawia Alghalith & Christos Floros & Konstantinos Gkillas, 2020. "Estimating Stochastic Volatility under the Assumption of Stochastic Volatility of Volatility," Risks, MDPI, vol. 8(2), pages 1-15, April.
    7. Adam Clements & Mark Bernard Doolan, 2020. "Combining multivariate volatility forecasts using weighted losses," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(4), pages 628-641, July.
    8. Maria Grith & Wolfgang Härdle & Juhyun Park, 2009. "Shape invariant modelling pricing kernels and risk aversion," SFB 649 Discussion Papers SFB649DP2009-041, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amendola, Alessandra & Storti, Giuseppe, 2008. "A GMM procedure for combining volatility forecasts," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3047-3060, February.
    2. Halbleib Roxana & Voev Valeri, 2011. "Forecasting Multivariate Volatility using the VARFIMA Model on Realized Covariance Cholesky Factors," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 134-152, February.
    3. Arie Preminger & Christian M. Hafner, 2006. "Deciding Between Garch And Stochastic Volatility Via Strong Decision Rules," Working Papers 0603, Ben-Gurion University of the Negev, Department of Economics.
    4. Michael McAleer & Marcelo Medeiros, 2008. "Realized Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
    5. Barndorff-Nielsen, Ole E. & Shephard, Neil, 2006. "Impact of jumps on returns and realised variances: econometric analysis of time-deformed Levy processes," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 217-252.
    6. Li, Jia & Patton, Andrew J., 2018. "Asymptotic inference about predictive accuracy using high frequency data," Journal of Econometrics, Elsevier, vol. 203(2), pages 223-240.
    7. Bork, Lasse & Kaltwasser, Pablo Rovira & Sercu, Piet, 2022. "Aggregation bias in tests of the commodity currency hypothesis," Journal of Banking & Finance, Elsevier, vol. 135(C).
    8. Sander Barendse & Andrew J. Patton, 2022. "Comparing Predictive Accuracy in the Presence of a Loss Function Shape Parameter," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1057-1069, June.
    9. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    10. PREMINGER, Arie & HAFNER, Christian, 2006. "Deciding between GARCH and stochastic volatility via strong decision rules," LIDAM Discussion Papers CORE 2006042, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Wei Kuang, 2021. "Conditional covariance matrix forecast using the hybrid exponentially weighted moving average approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1398-1419, December.
    12. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    13. Antonio Rubia & Trino-Manuel Ñíguez, 2006. "Forecasting the conditional covariance matrix of a portfolio under long-run temporal dependence," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 439-458.
    14. Rime, Dagfinn & Sarno, Lucio & Sojli, Elvira, 2010. "Exchange rate forecasting, order flow and macroeconomic information," Journal of International Economics, Elsevier, vol. 80(1), pages 72-88, January.
    15. Cavit Pakel & Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," Economics Papers 2009-W12, Economics Group, Nuffield College, University of Oxford.
    16. Anders Johansson, 2009. "An analysis of dynamic risk in the Greater China equity markets," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 7(3), pages 299-320.
    17. Asai, Manabu & McAleer, Michael, 2015. "Leverage and feedback effects on multifactor Wishart stochastic volatility for option pricing," Journal of Econometrics, Elsevier, vol. 187(2), pages 436-446.
    18. Chue, Timothy K. & Gul, Ferdinand A. & Mian, G. Mujtaba, 2019. "Aggregate investor sentiment and stock return synchronicity," Journal of Banking & Finance, Elsevier, vol. 108(C).
    19. Escobari, Diego & Garcia, Sergio & Mellado, Cristhian, 2017. "Identifying bubbles in Latin American equity markets: Phillips-Perron-based tests and linkages," Emerging Markets Review, Elsevier, vol. 33(C), pages 90-101.
    20. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.

    More about this item

    Keywords

    Multivariate GARCH; Forecast Combination; GMM; Portfolio Optimization;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hum:wpaper:sfb649dp2009-007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RDC-Team (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.