Advanced Search
MyIDEAS: Login

Support Vector Regression Based GARCH Model with Application to Forecasting Volatility of Financial Returns

Contents:

Author Info

  • Shiyi Chen
  • Kiho Jeong
  • Wolfgang Härdle

Abstract

In recent years, support vector regression (SVR), a novel neural network (NN) technique, has been successfully used for financial forecasting. This paper deals with the application of SVR in volatility forecasting. Based on a recurrent SVR, a GARCH method is proposed and is compared with a moving average (MA), a recurrent NN and a parametric GACH in terms of their ability to forecast financial markets volatility. The real data in this study uses British Pound-US Dollar (GBP) daily exchange rates from July 2, 2003 to June 30, 2005 and New York Stock Exchange (NYSE) daily composite index from July 3, 2003 to June 30, 2005. The experiment shows that, under both varying and fixed forecasting schemes, the SVR-based GARCH outperforms the MA, the recurrent NN and the parametric GARCH based on the criteria of mean absolute error (MAE) and directional accuracy (DA). No structured way being available to choose the free parameters of SVR, the sensitivity of performance is also examined to the free parameters.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2008-014.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Sonderforschungsbereich 649, Humboldt University, Berlin, Germany in its series SFB 649 Discussion Papers with number SFB649DP2008-014.

as in new window
Length: 27 pages
Date of creation: Jan 2008
Date of revision:
Handle: RePEc:hum:wpaper:sfb649dp2008-014

Contact details of provider:
Postal: Spandauer Str. 1,10178 Berlin
Phone: +49-30-2093-5708
Fax: +49-30-2093-5617
Email:
Web page: http://sfb649.wiwi.hu-berlin.de
More information through EDIRC

Related research

Keywords: recurrent support vector regression; GARCH model; volatility forecasting;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Gita Persand & Chris Brooks, 2003. "Volatility forecasting for risk management," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(1), pages 1-22.
  2. Adrian R. Pagan & G. William Schwert, 1990. "Alternative Models For Conditional Stock Volatility," NBER Working Papers 2955, National Bureau of Economic Research, Inc.
  3. Kenneth D. West & Dongchul Cho, 1994. "The Predictive Ability of Several Models of Exchange Rate Volatility," NBER Technical Working Papers 0152, National Bureau of Economic Research, Inc.
  4. Donaldson, R. Glen & Kamstra, Mark, 1997. "An artificial neural network-GARCH model for international stock return volatility," Journal of Empirical Finance, Elsevier, vol. 4(1), pages 17-46, January.
  5. David McMillan & Alan Speight & Owain Apgwilym, 2000. "Forecasting UK stock market volatility," Applied Financial Economics, Taylor & Francis Journals, vol. 10(4), pages 435-448.
  6. Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-63, July.
  7. Jorion, Philippe, 1995. " Predicting Volatility in the Foreign Exchange Market," Journal of Finance, American Finance Association, vol. 50(2), pages 507-28, June.
  8. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  9. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
  10. Clements, Michael P. & Smith, Jeremy, 2001. "Evaluating forecasts from SETAR models of exchange rates," Journal of International Money and Finance, Elsevier, vol. 20(1), pages 133-148, February.
  11. Robert F. Engle & Che-Hsiung Hong & Alex Kane, 1990. "Valuation of Variance Forecast with Simulated Option Markets," NBER Working Papers 3350, National Bureau of Economic Research, Inc.
  12. Brooks, Chris, 2001. "A Double-Threshold GARCH Model for the French Franc/Deutschmark Exchange Rate," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(2), pages 135-43, March.
  13. Chan, K C & Christie, William G & Schultz, Paul H, 1995. "Market Structure and the Intraday Pattern of Bid-Ask Spreads for NASDAQ Securities," The Journal of Business, University of Chicago Press, vol. 68(1), pages 35-60, January.
  14. Clements, Michael P & Smith, Jeremy, 1999. "A Monte Carlo Study of the Forecasting Performance of Empirical SETAR Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(2), pages 123-41, March-Apr.
  15. Brailsford, Timothy J. & Faff, Robert W., 1996. "An evaluation of volatility forecasting techniques," Journal of Banking & Finance, Elsevier, vol. 20(3), pages 419-438, April.
  16. Dunis, Christian L & Huang, Xuehuan, 2002. "Forecasting and Trading Currency Volatility: An Application of Recurrent Neural Regression and Model Combination," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(5), pages 317-54, August.
  17. Philippe Jorion, 1996. "Risk and Turnover in the Foreign Exchange Market," NBER Chapters, in: The Microstructure of Foreign Exchange Markets, pages 19-40 National Bureau of Economic Research, Inc.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:hum:wpaper:sfb649dp2008-014. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RDC-Team).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.