Advanced Search
MyIDEAS: Login

Graphical Data Representation in Bankruptcy Analysis

Contents:

Author Info

  • Wolfgang Härdle
  • Rouslan Moro
  • Dorothea Schäfer

Abstract

Graphical data representation is an important tool for model selection in bankruptcy analysis since the problem is highly non-linear and its numerical representation is much less transparent. In classical rating models a convenient representation of ratings in a closed form is possible reducing the need for graphical tools. In contrast to that non-linear non-parametric models achieving better accuracy often rely on visualisation. We demonstrate an application of visualisation techniques at different stages of corporate default analysis based on Support Vector Machines (SVM). These stages are the selection of variables (predictors), probability of default (PD) estimation and the representation of PDs for two and higher dimensional models with colour coding. It is at this stage when the selection of a proper colour scheme becomes essential for a correct visualisation of PDs. The mapping of scores into PDs is done as a non-parametric regression with monotonisation. The SVM learns a non-parametric score function that is, in its turn, non-parametrically transformed into PDs. Since PDs cannot be represented in a closed form, some other ways of displaying them must be found. Graphical tools give this possibility.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2006-015.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Sonderforschungsbereich 649, Humboldt University, Berlin, Germany in its series SFB 649 Discussion Papers with number SFB649DP2006-015.

as in new window
Length: 24 pages
Date of creation: Feb 2006
Date of revision:
Handle: RePEc:hum:wpaper:sfb649dp2006-015

Contact details of provider:
Postal: Spandauer Str. 1,10178 Berlin
Phone: +49-30-2093-5708
Fax: +49-30-2093-5617
Email:
Web page: http://sfb649.wiwi.hu-berlin.de
More information through EDIRC

Related research

Keywords: company rating; default probability; support vector machines; colour coding;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Shiyi Chen & Kiho Jeong & Wolfgang K. Härdle, 2008. "Recurrent Support Vector Regression for a Nonlinear ARMA Model with Applications to Forecasting Financial Returns," SFB 649 Discussion Papers SFB649DP2008-051, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:hum:wpaper:sfb649dp2006-015. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RDC-Team).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.