IDEAS home Printed from https://ideas.repec.org/p/hhs/nhhfms/2015_022.html
   My bibliography  Save this paper

Optimal Scale in Different Environments – The Case of Norwegian Electricity Distribution Companies

Author

Listed:
  • Cheng, Xiaomei

    (Dept. of Business and Management Science, Norwegian School of Economics)

  • Bjørndal, Endre

    (Dept. of Business and Management Science, Norwegian School of Economics)

  • Bjørndal, Mette

    (Dept. of Business and Management Science, Norwegian School of Economics)

Abstract

We study returns to scale in Norwegian electricity distribution companies. The scale issue of this sector has become an important political question, and it was for instance discussed by the Reiten commission (OED, 2014) in a study about the future structure and organization of the Norwegian electricity network industry. We use panel data from the Norwegian Water Resources and Energy Directorate (NVE) for the period from 2004 to 2010. The Data Envelopment Analysis (DEA) method and the Stochastic Nonparametric Envelopment of Data (StoNED) approach are applied to examine the scale issue. We show that a majority of the companies are smaller than the optimal size, in line with Kumbhakar et al. (2014). The performance of Norwegian distribution companies are influenced by a number of environmental factors, and some of these factors are negatively correlated with company size. However, our results show that controlling for environmental factors when estimating returns to scale does not have a big effect on the estimated optimal sizes.

Suggested Citation

  • Cheng, Xiaomei & Bjørndal, Endre & Bjørndal, Mette, 2015. "Optimal Scale in Different Environments – The Case of Norwegian Electricity Distribution Companies," Discussion Papers 2015/22, Norwegian School of Economics, Department of Business and Management Science.
  • Handle: RePEc:hhs:nhhfms:2015_022
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/11250/300271
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christian Growitsch & Tooraj Jamasb & Michael Pollitt, 2009. "Quality of service, efficiency and scale in network industries: an analysis of European electricity distribution," Applied Economics, Taylor & Francis Journals, vol. 41(20), pages 2555-2570.
    2. Banker, Rajiv D. & Thrall, R. M., 1992. "Estimation of returns to scale using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 62(1), pages 74-84, October.
    3. Darold Barnum & John Gleason, 2008. "Bias and precision in the DEA two-stage method," Applied Economics, Taylor & Francis Journals, vol. 40(18), pages 2305-2311.
    4. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    5. Mette Asmild & Bruce Hollingsworth & Stephen Birch, 2013. "The scale of hospital production in different settings: one size does not fit all," Journal of Productivity Analysis, Springer, vol. 40(2), pages 197-206, October.
    6. Hisnanick, John J. & Kymn, Kern O., 1999. "Modeling economies of scale: the case of US electric power companies," Energy Economics, Elsevier, vol. 21(3), pages 225-237, June.
    7. Dyson, R. G. & Allen, R. & Camanho, A. S. & Podinovski, V. V. & Sarrico, C. S. & Shale, E. A., 2001. "Pitfalls and protocols in DEA," European Journal of Operational Research, Elsevier, vol. 132(2), pages 245-259, July.
    8. John Kwoka, 2005. "Electric power distribution: economies of scale, mergers, and restructuring," Applied Economics, Taylor & Francis Journals, vol. 37(20), pages 2373-2386.
    9. Andrew Johnson & Timo Kuosmanen, 2011. "One-stage estimation of the effects of operational conditions and practices on productive performance: asymptotically normal and efficient, root-n consistent StoNEZD method," Journal of Productivity Analysis, Springer, vol. 36(2), pages 219-230, October.
    10. Timo Kuosmanen, 2008. "Representation theorem for convex nonparametric least squares," Econometrics Journal, Royal Economic Society, vol. 11(2), pages 308-325, July.
    11. Tovar, Beatriz & Javier Ramos-Real, Francisco & de Almeida, Edmar Fagundes, 2011. "Firm size and productivity. Evidence from the electricity distribution industry in Brazil," Energy Policy, Elsevier, vol. 39(2), pages 826-833, February.
    12. Finn Førsund & Lennart Hjalmarsson & Vladimir Krivonozhko & Oleg Utkin, 2007. "Calculation of scale elasticities in DEA models: direct and indirect approaches," Journal of Productivity Analysis, Springer, vol. 28(1), pages 45-56, October.
    13. Cheng, Xiaomei & Bjørndal, Endre & Bjørndal, Mette, 2014. "Cost Efficiency Analysis based on The DEA and StoNED Models: Case of Norwegian Electricity Distribution Companies," Discussion Papers 2014/28, Norwegian School of Economics, Department of Business and Management Science.
    14. V L Miguéis & A S Camanho & E Bjørndal & M Bjørndal, 2012. "Productivity change and innovation in Norwegian electricity distribution companies," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(7), pages 982-990, July.
    15. Kumbhakar, Subal C. & Hjalmarsson, Lennart, 1998. "Relative performance of public and private ownership under yardstick competition: electricity retail distribution," European Economic Review, Elsevier, vol. 42(1), pages 97-122, January.
    16. Growitsch, Christian & Jamasb, Tooraj & Wetzel, Heike, 2012. "Efficiency effects of observed and unobserved heterogeneity: Evidence from Norwegian electricity distribution networks," Energy Economics, Elsevier, vol. 34(2), pages 542-548.
    17. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    18. Ruggiero, John, 2004. "Performance evaluation when non-discretionary factors correlate with technical efficiency," European Journal of Operational Research, Elsevier, vol. 159(1), pages 250-257, November.
    19. Førsund, Finn R. & Kittelsen, Sverre A. C., 1998. "Productivity development of Norwegian electricity distribution utilities," Resource and Energy Economics, Elsevier, vol. 20(3), pages 207-224, September.
    20. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    21. Pekka Korhonen & Mikko Syrjänen, 2003. "Evaluation of Cost Efficiency in Finnish Electricity Distribution," Annals of Operations Research, Springer, vol. 121(1), pages 105-122, July.
    22. Timo Kuosmanen & Mika Kortelainen, 2012. "Stochastic non-smooth envelopment of data: semi-parametric frontier estimation subject to shape constraints," Journal of Productivity Analysis, Springer, vol. 38(1), pages 11-28, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Molinos-Senante, Maria & Maziotis, Alexandros, 2022. "Evaluation of energy efficiency of wastewater treatment plants: The influence of the technology and aging factors," Applied Energy, Elsevier, vol. 310(C).
    2. Stefan Seifert, 2016. "Semi-Parametric Measures of Scale Characteristics of German Natural Gas-Fired Electricity Generation," Discussion Papers of DIW Berlin 1571, DIW Berlin, German Institute for Economic Research.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Xiaomei & Bjørndal, Endre & Bjørndal, Mette, 2014. "Cost Efficiency Analysis based on The DEA and StoNED Models: Case of Norwegian Electricity Distribution Companies," Discussion Papers 2014/28, Norwegian School of Economics, Department of Business and Management Science.
    2. Stefan Seifert, 2016. "Semi-Parametric Measures of Scale Characteristics of German Natural Gas-Fired Electricity Generation," Discussion Papers of DIW Berlin 1571, DIW Berlin, German Institute for Economic Research.
    3. Saastamoinen, Antti & Bjørndal, Endre & Bjørndal, Mette, 2017. "Specification of merger gains in the Norwegian electricity distribution industry," Energy Policy, Elsevier, vol. 102(C), pages 96-107.
    4. Saastamoinen, Antti & Bjørndal, Endre & Bjørndal, Mette, 2016. "Specification of merger gains in the Norwegian electricity distribution industry," Discussion Papers 2016/7, Norwegian School of Economics, Department of Business and Management Science.
    5. Cheng, Xiaomei & Bjørndal, Endre & Lien, Gudbrand & Bjørndal, Mette, 2015. "Productivity Development for Norwegian Electricity Distribution Companies 2004-2013," Discussion Papers 2015/27, Norwegian School of Economics, Department of Business and Management Science.
    6. Andor, Mark A. & Parmeter, Christopher & Sommer, Stephan, 2019. "Combining uncertainty with uncertainty to get certainty? Efficiency analysis for regulation purposes," European Journal of Operational Research, Elsevier, vol. 274(1), pages 240-252.
    7. Christopher F. Parmeter & Valentin Zelenyuk, 2019. "Combining the Virtues of Stochastic Frontier and Data Envelopment Analysis," Operations Research, INFORMS, vol. 67(6), pages 1628-1658, November.
    8. Cheng, Xiaomei & Bjørndal, Endre & Bjørndal, Mette, 2015. "Malmquist Productivity Analysis based on StoNED," Discussion Papers 2015/25, Norwegian School of Economics, Department of Business and Management Science.
    9. Kuosmanen, Timo, 2012. "Stochastic semi-nonparametric frontier estimation of electricity distribution networks: Application of the StoNED method in the Finnish regulatory model," Energy Economics, Elsevier, vol. 34(6), pages 2189-2199.
    10. Xie, Bai-Chen & Ni, Kang-Kang & O'Neill, Eoghan & Li, Hong-Zhou, 2021. "The scale effect in China's power grid sector from the perspective of malmquist total factor productivity analysis," Utilities Policy, Elsevier, vol. 69(C).
    11. Subal Kumbhakar & Roar Amundsveen & Hilde Kvile & Gudbrand Lien, 2015. "Scale economies, technical change and efficiency in Norwegian electricity distribution, 1998–2010," Journal of Productivity Analysis, Springer, vol. 43(3), pages 295-305, June.
    12. Anaya, Karim L. & Pollitt, Michael G., 2017. "Using stochastic frontier analysis to measure the impact of weather on the efficiency of electricity distribution businesses in developing economies," European Journal of Operational Research, Elsevier, vol. 263(3), pages 1078-1094.
    13. Mekaroonreung, Maethee & Johnson, Andrew L., 2012. "Estimating the shadow prices of SO2 and NOx for U.S. coal power plants: A convex nonparametric least squares approach," Energy Economics, Elsevier, vol. 34(3), pages 723-732.
    14. Ahn, Heinz & Clermont, Marcel & Langner, Julia, 2023. "Comparative performance analysis of frontier-based efficiency measurement methods – A Monte Carlo simulation," European Journal of Operational Research, Elsevier, vol. 307(1), pages 294-312.
    15. Gil, Guilherme Dôco Roberti & Costa, Marcelo Azevedo & Lopes, Ana Lúcia Miranda & Mayrink, Vinícius Diniz, 2017. "Spatial statistical methods applied to the 2015 Brazilian energy distribution benchmarking model: Accounting for unobserved determinants of inefficiencies," Energy Economics, Elsevier, vol. 64(C), pages 373-383.
    16. Julia Schaefer & Marcel Clermont, 2018. "Stochastic non-smooth envelopment of data for multi-dimensional output," Journal of Productivity Analysis, Springer, vol. 50(3), pages 139-154, December.
    17. Agrell, Per J. & Brea-Solís, Humberto, 2017. "Capturing heterogeneity in electricity distribution operations: A critical review of latent class modelling," Energy Policy, Elsevier, vol. 104(C), pages 361-372.
    18. Cristina Polo & Julián Ramajo & Alejandro Ricci‐Risquete, 2021. "A stochastic semi‐non‐parametric analysis of regional efficiency in the European Union," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(1), pages 7-24, February.
    19. Mark Andor & Frederik Hesse, 2014. "The StoNED age: the departure into a new era of efficiency analysis? A monte carlo comparison of StoNED and the “oldies” (SFA and DEA)," Journal of Productivity Analysis, Springer, vol. 41(1), pages 85-109, February.
    20. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.

    More about this item

    Keywords

    Returns to scale; electricity distribution companies; Data Envelopment Analysis; Stochastic Nonparametric Envelopment of Data;
    All these keywords.

    JEL classification:

    • Q00 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:nhhfms:2015_022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stein Fossen (email available below). General contact details of provider: https://edirc.repec.org/data/dfnhhno.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.