Advanced Search
MyIDEAS: Login to save this paper or follow this series

Bessel bridges decomposition with varying dimension. Applications to finance

Contents:

Author Info

  • Gabriel Faraud

    ()
    (WIAS - Weierstrass Institute for Applied Analysis and Stochastics - WIAS)

  • Stéphane Goutte

    ()
    (LPMA - Laboratoire de Probabilités et Modèles Aléatoires - CNRS : UMR7599 - Université Paris VI - Pierre et Marie Curie - Université Paris VII - Paris Diderot)

Abstract

We consider a class of stochastic processes containing the classical and well-studied class of Squared Bessel processes. Our model, however, allows the dimension be a function of the time. We first give some classical results in a larger context where a time-varying drift term can be added. Then in the non-drifted case we extend many results already proven in the case of classical Bessel processes to our context. Our deepest result is a decomposition of the Bridge process associated to this generalized squared Bessel process, much similar to the much celebrated result of J. Pitman and M. Yor. On a more practical point of view, we give a methodology to compute the Laplace transform of additive functionals of our process and the associated bridge. This permits in particular to get directly access to the joint distribution of the value at t of the process and its integral. We finally give some financial applications to illustrate the panel of applications of our results.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://hal.archives-ouvertes.fr/docs/00/69/41/26/PDF/GBESQ_FG_3_Mai.pdf
Download Restriction: no

Bibliographic Info

Paper provided by HAL in its series Working Papers with number hal-00694126.

as in new window
Length:
Date of creation: 03 May 2012
Date of revision:
Handle: RePEc:hal:wpaper:hal-00694126

Note: View the original document on HAL open archive server: http://hal.archives-ouvertes.fr/hal-00694126
Contact details of provider:
Web page: http://hal.archives-ouvertes.fr/

Related research

Keywords: Squared Bessel process ; Bessel bridges decomposition ; Laplace transform ; Lévy Ito representation ; Financial applications;

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Deelstra, G. & Delbaen, F., 1995. "Long-term returns in stochastic interest rate models," Insurance: Mathematics and Economics, Elsevier, vol. 17(2), pages 163-169, October.
  2. Paul Glasserman & Kyoung-Kuk Kim, 2011. "Gamma expansion of the Heston stochastic volatility model," Finance and Stochastics, Springer, vol. 15(2), pages 267-296, June.
  3. Griselda Deelstra & Freddy Delbaen, 1995. "Long-term returns in stochastic interest rate models," ULB Institutional Repository 2013/7578, ULB -- Universite Libre de Bruxelles.
  4. Griselda Deelstra & Freddy Delbaen, 1995. "Long-term returns in stochastic interest rate models: convergence in law," ULB Institutional Repository 2013/7580, ULB -- Universite Libre de Bruxelles.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-00694126. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.