IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-00570317.html
   My bibliography  Save this paper

Precautionary principle and the cost benefit analysis of innovative projects

Author

Listed:
  • Marc Baudry

    (LEMNA - Laboratoire d'économie et de management de Nantes Atlantique - IEMN-IAE Nantes - Institut d'Économie et de Management de Nantes - Institut d'Administration des Entreprises - Nantes - UN - Université de Nantes)

Abstract

Public authorities often invoke the precautionary principle to ban or postpone the development of innovative projects with uncertain but potentially harmful irreversible impacts on the environment or health. As stated in the Rio declaration, the precautionary principle suggests balancing costs and benefits associated with irreversible decisions while taking account of the perspective to acquire better but costly information in the future. Though the real option theory seems to be an appropriate tool to deal with the precautionary principle it has two important limits with this respect. First it focuses on Markovian processes rather than on Bayesian learning. Second, it disregards the role of preferences whereas preferences are at the core of the seemingly linked concept of precautionary saving. The article is an attempt to circumvent these two limits. A canonical model of Bayesian real option expressed in terms of intertemporal utility maximisation is presented and solved. The optimal decision rule is discussed in the light of the precautionary principle. It is then shown how to switch consistently to an equivalent problem expressed in terms of costs and benefits.

Suggested Citation

  • Marc Baudry, 2011. "Precautionary principle and the cost benefit analysis of innovative projects," Working Papers hal-00570317, HAL.
  • Handle: RePEc:hal:wpaper:hal-00570317
    Note: View the original document on HAL open archive server: https://hal.science/hal-00570317
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00570317/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brennan, Michael J & Schwartz, Eduardo S, 1985. "Evaluating Natural Resource Investments," The Journal of Business, University of Chicago Press, vol. 58(2), pages 135-157, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helga Meier & Nicos Christofides & Gerry Salkin, 2001. "Capital Budgeting Under Uncertainty---An Integrated Approach Using Contingent Claims Analysis and Integer Programming," Operations Research, INFORMS, vol. 49(2), pages 196-206, April.
    2. Saphores, J.D. & Khalaf, L. & Pelletier, D., 2000. "On Jumps and ARCH Effects in Natural Resource Prices. An Application to Stumpage Prices from Pacific Northwest National Forests," Papers 00-03, Laval - Recherche en Energie.
    3. Agliardi, Rossella, 2006. "Options to expand: Some remarks," Finance Research Letters, Elsevier, vol. 3(1), pages 65-72, March.
    4. Bühler, Wolfgang & Korn, Olaf, 1998. "Hedging langfristiger Lieferverpflichtungen mit kurzfristigen Futures: möglich oder unmöglich?," ZEW Discussion Papers 98-20, ZEW - Leibniz Centre for European Economic Research.
    5. Adkins, Roger & Paxson, Dean, 2019. "Rescaling-contraction with a lower cost technology when revenue declines," European Journal of Operational Research, Elsevier, vol. 277(2), pages 574-586.
    6. Karl Pinno and Apostolos Serletis, 2013. "Oil Price Uncertainty and Industrial Production," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    7. Miao, Jianjun & Wang, Neng, 2007. "Investment, consumption, and hedging under incomplete markets," Journal of Financial Economics, Elsevier, vol. 86(3), pages 608-642, December.
    8. Santos, Lúcia & Soares, Isabel & Mendes, Carla & Ferreira, Paula, 2014. "Real Options versus Traditional Methods to assess Renewable Energy Projects," Renewable Energy, Elsevier, vol. 68(C), pages 588-594.
    9. Lund, Diderik, 2006. "Valuation, leverage and the cost of capital in the case of depreciable assets," Working Papers 03-2003, Copenhagen Business School, Department of Economics.
    10. Nguyen, Duc Binh Benno & Prokopczuk, Marcel, 2019. "Jumps in commodity markets," Journal of Commodity Markets, Elsevier, vol. 13(C), pages 55-70.
    11. Abdullah Almansour and Margaret Insley, 2016. "The Impact of Stochastic Extraction Cost on the Value of an Exhaustible Resource: An Application to the Alberta Oil Sands," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    12. Woo Sung Kim & Kunsu Park & Sang Hoon Lee & Hongyoung Kim, 2018. "R&D Investments and Firm Value: Evidence from China," Sustainability, MDPI, vol. 10(11), pages 1-17, November.
    13. Augusto Castillo, 2004. "Firm and Corporate Bond Valuation: A Simulation Dynamic Programming Approach," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 41(124), pages 345-360.
    14. Alain Bensoussan & Benoit Chevalier-Roignant & Alejandro Rivera, 2022. "A model for wind farm management with option interactions," Post-Print hal-04325553, HAL.
    15. Seiji Harikae & James S. Dyer & Tianyang Wang, 2021. "Valuing Real Options in the Volatile Real World," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 171-189, January.
    16. Chiara D'Alpaos & Cesare Dosi & Michele Moretto, 2005. "Concession lenght and investment timing flexibility," Working Papers ubs0502, University of Brescia, Department of Economics.
    17. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, December.
    18. Tsekrekos, Andrianos E. & Yannacopoulos, Athanasios N., 2016. "Optimal switching decisions under stochastic volatility with fast mean reversion," European Journal of Operational Research, Elsevier, vol. 251(1), pages 148-157.
    19. Roma, Antonio & Pirino, Davide, 2009. "The extraction of natural resources: The role of thermodynamic efficiency," Ecological Economics, Elsevier, vol. 68(10), pages 2594-2606, August.
    20. Schwartz, Eduardo S., 2002. "Patents and R& D as Real Options," University of California at Los Angeles, Anderson Graduate School of Management qt86b1n43k, Anderson Graduate School of Management, UCLA.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-00570317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.