Advanced Search
MyIDEAS: Login

Ordinal Games

Contents:

Author Info

  • Jacques Durieu

    (CREUSET - Centre de Recherche Economique de l'Université de Saint Etienne - Université Jean Monnet - Saint-Etienne : EA3724)

  • Hans Haller

    (Department of economics - Virginia Polytechnic Institute and State University)

  • Nicolas Quérou

    (School of Management and Economics - Queen's University of Belfast)

  • Philippe Solal

    (CREUSET - Centre de Recherche Economique de l'Université de Saint Etienne - Université Jean Monnet - Saint-Etienne : EA3724)

Abstract

We study strategic games where players' preferences are weak orders which need not admit utility representations. First of all, we ex- tend Voorneveld's concept of best-response potential from cardinal to ordi- nal games and derive the analogue of his characterization result: An ordi- nal game is a best-response potential game if and only if it does not have a best-response cycle. Further, Milgrom and Shannon's concept of quasi- supermodularity is extended from cardinal games to ordinal games. We ¯nd that under certain compactness and semicontinuity assumptions, the ordinal Nash equilibria of a quasi-supermodular game form a nonempty complete lattice. Finally, we extend several set-valued solution concepts from cardinal to ordinal games in our sense.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://hal-ujm.ccsd.cnrs.fr/docs/00/19/47/94/PDF/wp_07_74.pdf
Download Restriction: no

Bibliographic Info

Paper provided by HAL in its series Post-Print with number ujm-00194794.

as in new window
Length:
Date of creation: 01 Oct 2007
Date of revision:
Handle: RePEc:hal:journl:ujm-00194794

Note: View the original document on HAL open archive server: http://hal-ujm.ccsd.cnrs.fr/ujm-00194794/en/
Contact details of provider:
Web page: http://hal.archives-ouvertes.fr/

Related research

Keywords: Ordinal Games; Potential Games; Quasi-Supermodularity; Rationalizable Sets; Sets Closed under Behavior Correspondences;

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Schmeidler, David, 1969. "Competitive Equilibria in Markets with a Continuum of Traders and Incomplete Preferences," Econometrica, Econometric Society, vol. 37(4), pages 578-85, October.
  2. Ritzberger, Klaus & Weibull, Jorgen W, 1995. "Evolutionary Selection in Normal-Form Games," Econometrica, Econometric Society, vol. 63(6), pages 1371-99, November.
  3. Candeal, Juan C. & Herves, Carlos & Indurain, Esteban, 1998. "Some results on representation and extension of preferences," Journal of Mathematical Economics, Elsevier, vol. 29(1), pages 75-81, January.
  4. Voorneveld, M., 1996. "Equilibria and Approximate Equilibria in Infinite Potential Games," Discussion Paper 1996-94, Tilburg University, Center for Economic Research.
  5. Shafer, Wayne J, 1974. "The Nontransitive Consumer," Econometrica, Econometric Society, vol. 42(5), pages 913-19, September.
  6. Basu, Kaushik & Weibull, Jorgen W., 1991. "Strategy subsets closed under rational behavior," Economics Letters, Elsevier, vol. 36(2), pages 141-146, June.
  7. Ehlers, Lars, 2002. "Multiple public goods and lexicographic preferences: replacement principle," Journal of Mathematical Economics, Elsevier, vol. 37(1), pages 1-15, February.
  8. Milgrom, Paul & Shannon, Chris, 1994. "Monotone Comparative Statics," Econometrica, Econometric Society, vol. 62(1), pages 157-80, January.
  9. Josephson, Jens & Matros, Alexander, 2000. "Stochastic Imitation in Finite Games," Working Paper Series in Economics and Finance 363, Stockholm School of Economics, revised 26 Nov 2002.
  10. Ui, Takashi, 2000. "A Shapley Value Representation of Potential Games," Games and Economic Behavior, Elsevier, vol. 31(1), pages 121-135, April.
  11. Vives, Xavier, 1990. "Nash equilibrium with strategic complementarities," Journal of Mathematical Economics, Elsevier, vol. 19(3), pages 305-321.
  12. Henk Norde & Fioravante Patrone, 2001. "A potential approach for ordinal games," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer, vol. 9(1), pages 69-75, June.
  13. Ehlers, Lars, 2003. "Multiple public goods, lexicographic preferences, and single-plateaued preference rules," Games and Economic Behavior, Elsevier, vol. 43(1), pages 1-27, April.
  14. Mertens, J.-F., 1987. "Ordinality in non cooperative games," CORE Discussion Papers 1987028, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  15. Beardon, Alan F. & Candeal, Juan C. & Herden, Gerhard & Indurain, Esteban & Mehta, Ghanshyam B., 2002. "The non-existence of a utility function and the structure of non-representable preference relations," Journal of Mathematical Economics, Elsevier, vol. 37(1), pages 17-38, February.
  16. Vitaly Pruzhansky, 2003. "On finding curb sets in extensive games," International Journal of Game Theory, Springer, vol. 32(2), pages 205-210, December.
  17. Vermeulen, A. J. & Jansen, M. J. M., 2000. "Ordinality of solutions of noncooperative games," Journal of Mathematical Economics, Elsevier, vol. 33(1), pages 13-34, February.
  18. Borglin, Anders & Keiding, Hans, 1976. "Existence of equilibrium actions and of equilibrium : A note on the `new' existence theorems," Journal of Mathematical Economics, Elsevier, vol. 3(3), pages 313-316, December.
  19. Bosi, G. & Mehta, G. B., 2002. "Existence of a semicontinuous or continuous utility function: a unified approach and an elementary proof," Journal of Mathematical Economics, Elsevier, vol. 38(3), pages 311-328, November.
  20. Toranzo, Margarita Estevez & Beloso, Carlos Herves, 1995. "On the existence of continuous preference orderings without utility representations," Journal of Mathematical Economics, Elsevier, vol. 24(4), pages 305-309.
  21. Voorneveld, Mark & Norde, Henk, 1997. "A Characterization of Ordinal Potential Games," Games and Economic Behavior, Elsevier, vol. 19(2), pages 235-242, May.
  22. Norde, H.W. & Tijs, S.H., 1998. "Determinateness of strategic games with a potential," Open Access publications from Tilburg University urn:nbn:nl:ui:12-78038, Tilburg University.
  23. Bulow, Jeremy I & Geanakoplos, John D & Klemperer, Paul D, 1985. "Multimarket Oligopoly: Strategic Substitutes and Complements," Journal of Political Economy, University of Chicago Press, vol. 93(3), pages 488-511, June.
  24. Bergstrom, Theodore C., 1976. "How to discard `free disposability' - at no cost," Journal of Mathematical Economics, Elsevier, vol. 3(2), pages 131-134, July.
  25. Shafer, Wayne & Sonnenschein, Hugo, 1975. "Some theorems on the existence of competitive equilibrium," Journal of Economic Theory, Elsevier, vol. 11(1), pages 83-93, August.
  26. Monderer, Dov & Shapley, Lloyd S., 1996. "Potential Games," Games and Economic Behavior, Elsevier, vol. 14(1), pages 124-143, May.
  27. Shafer, Wayne J., 1976. "Equilibrium in economies without ordered preferences or free disposal," Journal of Mathematical Economics, Elsevier, vol. 3(2), pages 135-137, July.
  28. Kim, Taesung & Richter, Marcel K., 1986. "Nontransitive-nontotal consumer theory," Journal of Economic Theory, Elsevier, vol. 38(2), pages 324-363, April.
  29. Morris, Stephen & Ui, Takashi, 2004. "Best response equivalence," Games and Economic Behavior, Elsevier, vol. 49(2), pages 260-287, November.
  30. Perea,Andres & Peters,Hans & Schulteis,Tim & Vermeulen,Dries, 2005. "Stochastic dominance equilibria in two-person noncooperative games," Research Memorandum 004, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
  31. Kukushkin, Nikolai S., 1999. "Potential games: a purely ordinal approach," Economics Letters, Elsevier, vol. 64(3), pages 279-283, September.
  32. Monteiro, Paulo Klinger, 1987. "Some results on the existence of utility functions on path connected spaces," Journal of Mathematical Economics, Elsevier, vol. 16(2), pages 147-156, April.
  33. Vitaly Pruzhansky, 2003. "On Finding Curb Sets in Extensive Games," Tinbergen Institute Discussion Papers 03-098/1, Tinbergen Institute.
  34. Pearce, David G, 1984. "Rationalizable Strategic Behavior and the Problem of Perfection," Econometrica, Econometric Society, vol. 52(4), pages 1029-50, July.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. T. Demuynck, 2007. "Absolute and Relative Time-Consistent Revealed Preferences," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 07/485, Ghent University, Faculty of Economics and Business Administration.
  2. Edward J. Balistreri & Russell H. Hillberry & Thomas F. Rutherford, 2008. "Structural Estimation and Solution of International Trade Models with Heterogeneous Firms," Department of Economics - Working Papers Series 1056, The University of Melbourne.
  3. Balistreri, Edward J. & Hillberry, Russell H. & Rutherford, Thomas F., 2010. "Trade and welfare: Does industrial organization matter?," Economics Letters, Elsevier, vol. 109(2), pages 85-87, November.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:hal:journl:ujm-00194794. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.