Advanced Search
MyIDEAS: Login to save this paper or follow this series

A class of simple distribution-free rank-based unit root tests

Contents:

Author Info

  • Marc Hallin

    ()
    (Tilburg University - Tilburg University)

  • Ramon van den Akker

    ()
    (Tilburg University - Tilburg University)

  • Bas J.M. Werker

    ()
    (Tilburg University - Tilburg University)

Abstract

We propose a class of distribution-free rank-based tests for the null hypothesis of a unit root. This class is indexed by the choice of a , which needs not coincide with the unknown actual innovation density . The validity of these tests, in terms of exact finite sample size, is guaranteed, irrespective of the actual underlying density, by distribution-freeness. Those tests are locally and asymptotically optimal under a particular asymptotic scheme, for which we provide a complete analysis of asymptotic relative efficiencies. Rather than asymptotic optimality, however, we emphasize finite-sample performances, which, quite heavily, also depend on initial values. It appears that our rank-based tests significantly outperform the traditional Dickey-Fuller tests, as well as the more recent procedures proposed by Elliot, Rothenberg, and Stock (1996), Ng and Perron (2001), and Elliott and Müller (2006), for a broad range of initial values and for heavy-tailed innovation densities. As such, they provide a useful complement to existing techniques.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://peer.ccsd.cnrs.fr/docs/00/83/44/24/PDF/PEER_stage2_10.1016%252Fj.jeconom.2011.03.007.pdf
Download Restriction: no

Bibliographic Info

Paper provided by HAL in its series Post-Print with number peer-00834424.

as in new window
Length:
Date of creation: 15 Jun 2011
Date of revision:
Publication status: Published, Journal of Econometrics, 2011
Handle: RePEc:hal:journl:peer-00834424

Note: View the original document on HAL open archive server: http://peer.ccsd.cnrs.fr/peer-00834424
Contact details of provider:
Web page: http://hal.archives-ouvertes.fr/

Related research

Keywords: C12; C22; Unit root; Dickey-Fuller test; Local asymptotic normality; Rank test;

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Werner Ploberger, 2004. "Admissible and Nonadmissible Test in Unit-Root-like Situations," Econometric Society 2004 North American Summer Meetings 555, Econometric Society.
  2. Elliott, Graham & Muller, Ulrich K., 2006. "Minimizing the impact of the initial condition on testing for unit roots," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 285-310.
  3. José Angel Roldán Casas & Rafaela Dios-Palomares, 2004. "A Strategy for Testing the Unit Root in AR(1) Model with Intercept. A Monte Carlo Experiment," Economic Working Papers at Centro de Estudios Andaluces E2004/37, Centro de Estudios Andaluces.
  4. Dufour, J.M., 1979. "Rank Tests for Serial Dependence," Cahiers de recherche 7815, Universite de Montreal, Departement de sciences economiques.
  5. Campbell, B. & Dufour, J.M., 1994. "Excat Nonparametric Tests of Orthogonality and Random Walk in the Presence of a Drift Parameter," Cahiers de recherche 9407, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  6. M. N. Hasan & R. W. Koenker, 1997. "Robust Rank Tests of the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 65(1), pages 133-162, January.
  7. Phillips, P C B, 1991. "Optimal Inference in Cointegrated Systems," Econometrica, Econometric Society, vol. 59(2), pages 283-306, March.
  8. Campbell, Bryan & Dufour, Jean-Marie, 1995. "Exact Nonparametric Orthogonality and Random Walk Tests," The Review of Economics and Statistics, MIT Press, vol. 77(1), pages 1-16, February.
  9. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
  10. Breitung, Jorg & Gourieroux, Christian, 1997. "Rank tests for unit roots," Journal of Econometrics, Elsevier, vol. 81(1), pages 7-27, November.
  11. Ulrich K. M¸ller & Graham Elliott, 2003. "Tests for Unit Roots and the Initial Condition," Econometrica, Econometric Society, vol. 71(4), pages 1269-1286, 07.
  12. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-80, November.
  13. Drost, F.C. & Klaasens, C.A.J. & Werker, B.J.M., 1994. "Adaptive Estimation in Time Series Models," Papers 9488, Tilburg - Center for Economic Research.
  14. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-72, June.
  15. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-36, July.
  16. Michael Jansson, 2008. "Semiparametric Power Envelopes for Tests of the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 76(5), pages 1103-1142, 09.
  17. Rothenberg, Thomas J. & Stock, James H., 1997. "Inference in a nearly integrated autoregressive model with nonnormal innovations," Journal of Econometrics, Elsevier, vol. 80(2), pages 269-286, October.
  18. Thompson, Samuel B., 2004. "Optimal Versus Robust Inference In Nearly Integrated Non-Gaussian Models," Econometric Theory, Cambridge University Press, vol. 20(01), pages 23-55, February.
  19. Hasan, Mohammad N., 2001. "Rank tests of unit root hypothesis with infinite variance errors," Journal of Econometrics, Elsevier, vol. 104(1), pages 49-65, August.
  20. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504.
  21. Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002. "Unit root tests in panel data: asymptotic and finite-sample properties," Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
  22. Perron, Pierre, 1988. "Trends and random walks in macroeconomic time series : Further evidence from a new approach," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 297-332.
  23. Michael Jansson & Marcelo J. Moreira, 2004. "Optimal Inference in Regression Models with Nearly Integrated Regressors," NBER Technical Working Papers 0303, National Bureau of Economic Research, Inc.
  24. Elise Coudin & Jean-Marie Dufour, 2007. "Finite-sample Distribution-free Inference in Linear Median Regression under Heteroskedasticity and Nonlinear Dependence of Unknown Form," Working Papers 2007-38, Centre de Recherche en Economie et Statistique.
  25. Luger, Richard, 2001. "Exact Non-Parametric Tests for a Random Walk with Unknown Drift under Conditional Heteroscedasticity," Working Papers 01-2, Bank of Canada.
  26. Serena Ng & Pierre Perron, 2001. "LAG Length Selection and the Construction of Unit Root Tests with Good Size and Power," Econometrica, Econometric Society, vol. 69(6), pages 1519-1554, November.
  27. Elliott, Graham & Jansson, Michael, 2002. "Testing for Unit Roots with Stationary Covariates," University of California at San Diego, Economics Working Paper Series qt4v35s2gv, Department of Economics, UC San Diego.
  28. Sung Ahn & Stergios Fotopoulos & Lijian He, 2001. "Unit Root Tests With Infinite Variance Errors," Econometric Reviews, Taylor & Francis Journals, vol. 20(4), pages 461-483.
  29. Ploberger, Werner, 2004. "A complete class of tests when the likelihood is locally asymptotically quadratic," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 67-94.
  30. Bhargava, Alok, 1986. "On the Theory of Testing for Unit Roots in Observed Time Series," Review of Economic Studies, Wiley Blackwell, vol. 53(3), pages 369-84, July.
  31. Im, Kyung So & Pesaran, M. Hashem & Shin, Yongcheol, 2003. "Testing for unit roots in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 115(1), pages 53-74, July.
  32. Hylleberg, Svend & Mizon, Grayham E., 1989. "A note on the distribution of the least squares estimator of a random walk with drift," Economics Letters, Elsevier, vol. 29(3), pages 225-230.
  33. Marc Hallin & Yves-Caoimhin Swan & Thomas Verdebout & David Veredas, 2011. "Rank-based testing in linear models with stable errors," ULB Institutional Repository 2013/136196, ULB -- Universite Libre de Bruxelles.
  34. West, Kenneth D, 1988. "Asymptotic Normality, When Regressors Have a Unit Root," Econometrica, Econometric Society, vol. 56(6), pages 1397-1417, November.
  35. Jean-Marie Dufour, 1997. "Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models," Econometrica, Econometric Society, vol. 65(6), pages 1365-1388, November.
  36. Thompson, Samuel B., 2004. "Robust Tests Of The Unit Root Hypothesis Should Not Be," Econometric Theory, Cambridge University Press, vol. 20(02), pages 360-381, April.
  37. Jeganathan, P., 1995. "Some Aspects of Asymptotic Theory with Applications to Time Series Models," Econometric Theory, Cambridge University Press, vol. 11(05), pages 818-887, October.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Becheri, I.G. & Drost, F.C. & Akker, R. van den, 2013. "Asymptotically UMP Panel Unit Root Tests," Discussion Paper 2013-017, Tilburg University, Center for Economic Research.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:hal:journl:peer-00834424. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.