IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-00371842.html
   My bibliography  Save this paper

A game theoretic model for generation capacity adequacy in electricity markets: A comparison between investment incentive mechanisms

Author

Listed:
  • Haikel Khalfallah

    (GATE Lyon Saint-Étienne - Groupe d'Analyse et de Théorie Economique Lyon - Saint-Etienne - ENS de Lyon - École normale supérieure de Lyon - UL2 - Université Lumière - Lyon 2 - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon - UJM - Université Jean Monnet - Saint-Étienne - CNRS - Centre National de la Recherche Scientifique)

Abstract

In this paper we study the problem of long-term capacity adequacy in electricity markets. We implement a dynamic model in which operators compete for investment and electricity production under imperfect Cournot competition. The main aim of this work is tocompare three investment incentive mechanisms: reliability options, forward capacity market - which are both market-based - and capacity payments. Apart from the oligopoly case, we also analyze collusion and monopoly cases. Stochastic dynamic programming is used to deal with the stochastic environment of the market (future demand) and mixed complementarityproblem formulation is employed to find a solution to this game. The main finding of this study is that market-based mechanisms would be the most cost-efficient mechanism for assuring long-term system adequacy and encouraging earlier and adequate new investments in the system. Moreover, generators would exert market power when introducing capacity payments. Finally, compared with a Cournot oligopoly, collusion and monopolistic situations lead to more installed capacities with market-based mechanisms and increase end-users' payments.

Suggested Citation

  • Haikel Khalfallah, 2009. "A game theoretic model for generation capacity adequacy in electricity markets: A comparison between investment incentive mechanisms," Post-Print halshs-00371842, HAL.
  • Handle: RePEc:hal:journl:halshs-00371842
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00371842
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00371842/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ford, Andrew, 1999. "Cycles in competitive electricity markets: a simulation study of the western United States," Energy Policy, Elsevier, vol. 27(11), pages 637-658, October.
    2. Pierre-Olivier Pineau & Pauli Murto, 2003. "An Oligopolistic Investment Model of the Finnish Electricity Market," Annals of Operations Research, Springer, vol. 121(1), pages 123-148, July.
    3. Steven A. Gabriel & Supat Kiet & Jifang Zhuang, 2005. "A Mixed Complementarity-Based Equilibrium Model of Natural Gas Markets," Operations Research, INFORMS, vol. 53(5), pages 799-818, October.
    4. Frederic H. Murphy & Yves Smeers, 2005. "Generation Capacity Expansion in Imperfectly Competitive Restructured Electricity Markets," Operations Research, INFORMS, vol. 53(4), pages 646-661, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lynch, Muireann Á. & Nolan, Sheila & Devine, Mel T. & O’Malley, Mark, 2019. "The impacts of demand response participation in capacity markets," Applied Energy, Elsevier, vol. 250(C), pages 444-451.
    2. Nolan, Sheila & Devine, Mel & Lynch, Muireann A. & O’Malley, Mark, 2017. "The effect of Demand Response and wind generation on electricity investment and operation," Papers WP577, Economic and Social Research Institute (ESRI).
    3. Nolan, Sheila & Devine, Mel & Lynch, Muireann & O'Malley, Mark, 2016. "Impact of Demand Response Participation in Energy, Reserve and Capacity Markets," MPRA Paper 74672, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haikel Khalfallah, 2011. "A Game theoretic model for generation capacity adequacy: Comparison between investment incentive mechanisms in electricity markets," Post-Print halshs-00743195, HAL.
    2. Gijsbert T.J. Zwart, 2009. "European Natural Gas Markets: Resource Constraints and Market Power," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 151-166.
    3. Pineau, Pierre-Olivier & Rasata, Hasina & Zaccour, Georges, 2011. "Impact of some parameters on investments in oligopolistic electricity markets," European Journal of Operational Research, Elsevier, vol. 213(1), pages 180-195, August.
    4. Pineda, Salvador & Boomsma, Trine K. & Wogrin, Sonja, 2018. "Renewable generation expansion under different support schemes: A stochastic equilibrium approach," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1086-1099.
    5. Lise, Wietze & Hobbs, Benjamin F., 2008. "Future evolution of the liberalised European gas market: Simulation results with a dynamic model," Energy, Elsevier, vol. 33(7), pages 989-1004.
    6. Veronika Grimm & Lars Schewe & Martin Schmidt & Gregor Zöttl, 2019. "A multilevel model of the European entry-exit gas market," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(2), pages 223-255, April.
    7. Genc, Talat S. & Thille, Henry, 2011. "Investment in electricity markets with asymmetric technologies," Energy Economics, Elsevier, vol. 33(3), pages 379-387, May.
    8. Michael Pahle, Kai Lessmann, Ottmar Edenhofer, and Nico Bauer, 2013. "Investments in Imperfect Power Markets under Carbon Pricing: A Case Study Based Analysis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    9. S. Oliveira, Fernando & William-Rioux, Bertrand & Pierru, Axel, 2023. "Capacity expansion in liberalized electricity markets with locational pricing and renewable energy investments," Energy Economics, Elsevier, vol. 127(PB).
    10. Sakellaris, Kostis, 2010. "Modeling Electricity Markets as Two-Stage Capacity Constrained Price Competition Games under Uncertainty," MPRA Paper 23317, University Library of Munich, Germany.
    11. Dorea Chin & Afzal Siddiqui, 2014. "Capacity expansion and forward contracting in a duopolistic power sector," Computational Management Science, Springer, vol. 11(1), pages 57-86, January.
    12. Lorenczik, Stefan & Malischek, Raimund & Trüby, Johannes, 2017. "Modeling strategic investment decisions in spatial markets," European Journal of Operational Research, Elsevier, vol. 256(2), pages 605-618.
    13. Filomena, Tiago Pascoal & Campos-Náñez, Enrique & Duffey, Michael Robert, 2014. "Technology selection and capacity investment under uncertainty," European Journal of Operational Research, Elsevier, vol. 232(1), pages 125-136.
    14. Haikel Khalfallah & Vincent Rious, 2013. "A game theoretical analysis of the design options of the real-time electricity market," Post-Print halshs-00816355, HAL.
    15. Fernández, Mauricio & Muñoz, Francisco D. & Moreno, Rodrigo, 2020. "Analysis of imperfect competition in natural gas supply contracts for electric power generation: A closed-loop approach," Energy Economics, Elsevier, vol. 87(C).
    16. Zhaomiao Guo & Yueyue Fan, 2017. "A Stochastic Multi-agent Optimization Model for Energy Infrastructure Planning under Uncertainty in An Oligopolistic Market," Networks and Spatial Economics, Springer, vol. 17(2), pages 581-609, June.
    17. Gijsbert T.J. Zwart, 2009. "European Natural Gas Markets: Resource Constraints and Market Power," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 151-166.
    18. Devine, Mel T. & Russo, Marianna, 2019. "Liquefied natural gas and gas storage valuation: Lessons from the integrated Irish and UK markets," Applied Energy, Elsevier, vol. 238(C), pages 1389-1406.
    19. Finon, Dominique & Meunier, Guy & Pignon, Virginie, 2008. "The social efficiency of long-term capacity reserve mechanisms," Utilities Policy, Elsevier, vol. 16(3), pages 202-214, September.
    20. repec:hal:wpaper:halshs-00816355 is not listed on IDEAS
    21. Ferreira, José Luis & Kujal, Praveen & Rassenti, Stephen, 2009. "The strategic motive to sell forward: experimental evidence," UC3M Working papers. Economics we092616, Universidad Carlos III de Madrid. Departamento de Economía.

    More about this item

    Keywords

    Electricity markets; capacity adequacy; dynamic programming; Nash-Cournot model; mixed complementarity problem;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-00371842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.