IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01586814.html
   My bibliography  Save this paper

CO 2 emission mitigation and fossil fuel markets: Dynamic and international aspects of climate policies

Author

Listed:
  • Nico Bauer

    (PIK - Potsdam Institute for Climate Impact Research)

  • Valentina Bosetti

    (Dipartimento di Economia - Università Bocconi)

  • Meriem Hamdi-Cherif

    (CIRED - centre international de recherche sur l'environnement et le développement - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - EHESS - École des hautes études en sciences sociales - AgroParisTech - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique)

  • Alban Kitous

    (IPTS - JRC Institute for Prospective Technological Studies - JRC - European Commission - Joint Research Centre [Seville])

  • David Mccollum

    (IIASA - International Institute for Applied Systems Analysis [Laxenburg])

  • Aurélie Méjean

    (CIRED - centre international de recherche sur l'environnement et le développement - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - EHESS - École des hautes études en sciences sociales - AgroParisTech - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique)

  • Shilpa Rao

    (IIASA - International Institute for Applied Systems Analysis [Laxenburg])

  • Hal Turton

    (PSI - Paul Scherrer Institute)

  • Leonidas Paroussos

    (NTUA - National Technical University of Athens [Athens])

  • Shuichi Ashina

    (NIES - National Institute for Environmental Studies)

  • Katherine Calvin

    (Joint Global Change Research Institute - PNNL - Pacific Northwest National Laboratory - University of Maryland [College Park] - University of Maryland System)

  • Kenichi Wada

    (NIES - National Institute for Environmental Studies)

  • Detlef van Vuuren

    (Universiteit Utrecht / Utrecht University [Utrecht])

Abstract

This paper explores a multi-model scenario ensemble to assess the impacts of idealized and non-idealized climate change stabilization policies on fossil fuel markets. Under idealized conditions climate policies significantly reduce coal use in the short-and long-term. Reductions in oil and gas use are much smaller, particularly until 2030, but revenues decrease much more because oil and gas prices are higher than coal prices. A first deviation from optimal transition pathways is delayed action that relaxes global emission targets until 2030 in accordance with the Copenhagen pledges. Fossil fuel markets revert back to the no-policy case: though coal use increases strongest, revenue gains are higher for oil and gas. To balance the carbon budget over the 21st century, the long-term reallocation of fossil fuels is significantly larger—twice and more— than the short-term distortion. This amplifying effect results from coal lock-in and inter-fuel substitution effects to balance the full-century carbon budget. The second deviation from the optimal transition pathway relaxes the global participation assumption. The result here is less clear-cut across models, as we find carbon leakage effects ranging from positive to negative because trade and substitution patterns of coal, oil, and gas differ across models. In summary, distortions of fossil fuel markets resulting from relaxed short-term global emission targets are more important and less uncertain than the issue of carbon leakage from early mover action.

Suggested Citation

  • Nico Bauer & Valentina Bosetti & Meriem Hamdi-Cherif & Alban Kitous & David Mccollum & Aurélie Méjean & Shilpa Rao & Hal Turton & Leonidas Paroussos & Shuichi Ashina & Katherine Calvin & Kenichi Wada , 2015. "CO 2 emission mitigation and fossil fuel markets: Dynamic and international aspects of climate policies," Post-Print hal-01586814, HAL.
  • Handle: RePEc:hal:journl:hal-01586814
    DOI: 10.1016/j.techfore.2013.09.009
    Note: View the original document on HAL open archive server: https://hal.science/hal-01586814
    as

    Download full text from publisher

    File URL: https://hal.science/hal-01586814/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.techfore.2013.09.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Böhringer, Christoph & Lange, Andreas & Rutherford, Thomas F., 2014. "Optimal emission pricing in the presence of international spillovers: Decomposing leakage and terms-of-trade motives," Journal of Public Economics, Elsevier, vol. 110(C), pages 101-111.
    2. Kathy Baylis & Don Fullerton & Daniel H. Karney, 2013. "Leakage, Welfare, and Cost-Effectiveness of Carbon Policy," American Economic Review, American Economic Association, vol. 103(3), pages 332-337, May.
    3. Paroussos, Leonidas & Fragkos, Panagiotis & Capros, Pantelis & Fragkiadakis, Kostas, 2015. "Assessment of carbon leakage through the industry channel: The EU perspective," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 204-219.
    4. Kriegler, Elmar & Riahi, Keywan & Bauer, Nico & Schwanitz, Valeria Jana & Petermann, Nils & Bosetti, Valentina & Marcucci, Adriana & Otto, Sander & Paroussos, Leonidas & Rao, Shilpa & Arroyo Currás, T, 2015. "Making or breaking climate targets: The AMPERE study on staged accession scenarios for climate policy," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 24-44.
    5. Jared C. Carbone, 2013. "Linking Numerical and Analytical Models of Carbon Leakage," American Economic Review, American Economic Association, vol. 103(3), pages 326-331, May.
    6. Hoel Michael, 1994. "Efficient Climate Policy in the Presence of Free Riders," Journal of Environmental Economics and Management, Elsevier, vol. 27(3), pages 259-274, November.
    7. David McCollum & Nico Bauer & Katherine Calvin & Alban Kitous & Keywan Riahi, 2014. "Fossil resource and energy security dynamics in conventional and carbon-constrained worlds," Climatic Change, Springer, vol. 123(3), pages 413-426, April.
    8. Riahi, Keywan & Kriegler, Elmar & Johnson, Nils & Bertram, Christoph & den Elzen, Michel & Eom, Jiyong & Schaeffer, Michiel & Edmonds, Jae & Isaac, Morna & Krey, Volker & Longden, Thomas & Luderer, Gu, 2015. "Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 8-23.
    9. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198.
    10. Bertram, Christoph & Johnson, Nils & Luderer, Gunnar & Riahi, Keywan & Isaac, Morna & Eom, Jiyong, 2015. "Carbon lock-in through capital stock inertia associated with weak near-term climate policies," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 62-72.
    11. Arroyo-Currás, Tabaré & Bauer, Nico & Kriegler, Elmar & Schwanitz, Valeria Jana & Luderer, Gunnar & Aboumahboub, Tino & Giannousakis, Anastasis & Hilaire, Jérôme, 2015. "Carbon leakage in a fragmented climate regime: The dynamic response of global energy markets," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 192-203.
    12. Grubb, Michael, 2001. "Who's afraid of atmospheric stabilisation? Making the link between energy resources and climate change," Energy Policy, Elsevier, vol. 29(11), pages 837-845, September.
    13. Böhringer, Christoph & Balistreri, Edward J. & Rutherford, Thomas F., 2012. "The role of border carbon adjustment in unilateral climate policy: Overview of an Energy Modeling Forum study (EMF 29)," Energy Economics, Elsevier, vol. 34(S2), pages 97-110.
    14. Jean-Marc Burniaux & Joaquim Oliveira Martins, 2000. "Carbon Emission Leakages: A General Equilibrium View," OECD Economics Department Working Papers 242, OECD Publishing.
    15. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935.
    16. Niven Winchester & Sebastian Rausch, 2013. "A Numerical Investigation of the Potential for Negative Emissions Leakage," American Economic Review, American Economic Association, vol. 103(3), pages 320-325, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shao, Meng & Zhao, Yuanxu & Sun, Jinwei & Han, Zhixin & Shao, Zhuxiao, 2023. "A decision framework for tidal current power plant site selection based on GIS-MCDM: A case study in China," Energy, Elsevier, vol. 262(PB).
    2. Giannousakis, Anastasis & Hilaire, Jérôme & Nemet, Gregory F. & Luderer, Gunnar & Pietzcker, Robert C. & Rodrigues, Renato & Baumstark, Lavinia & Kriegler, Elmar, 2021. "How uncertainty in technology costs and carbon dioxide removal availability affect climate mitigation pathways," Energy, Elsevier, vol. 216(C).
    3. Otto, Sander A.C. & Gernaat, David E.H.J. & Isaac, Morna & Lucas, Paul L. & van Sluisveld, Mariësse A.E. & van den Berg, Maarten & van Vliet, Jasper & van Vuuren, Detlef P., 2015. "Impact of fragmented emission reduction regimes on the energy market and on CO2 emissions related to land use: A case study with China and the European Union as first movers," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 220-229.
    4. Rick Van der Ploeg & Armon Rezai, 2017. "The Simple Arithmetic of Carbon Pricing and Stranded Assets," OxCarre Working Papers 197, Oxford Centre for the Analysis of Resource Rich Economies, University of Oxford.
    5. Bauer, Nico & Hilaire, Jérôme & Brecha, Robert J. & Edmonds, Jae & Jiang, Kejun & Kriegler, Elmar & Rogner, Hans-Holger & Sferra, Fabio, 2016. "Assessing global fossil fuel availability in a scenario framework," Energy, Elsevier, vol. 111(C), pages 580-592.
    6. van der Ploeg, Frederick & Rezai, Armon, 2020. "The risk of policy tipping and stranded carbon assets," Journal of Environmental Economics and Management, Elsevier, vol. 100(C).
    7. Lucas Cuadra & Miguel Del Pino & José Carlos Nieto-Borge & Sancho Salcedo-Sanz, 2017. "Optimizing the Structure of Distribution Smart Grids with Renewable Generation against Abnormal Conditions: A Complex Networks Approach with Evolutionary Algorithms," Energies, MDPI, vol. 10(8), pages 1-31, July.
    8. Arroyo-Currás, Tabaré & Bauer, Nico & Kriegler, Elmar & Schwanitz, Valeria Jana & Luderer, Gunnar & Aboumahboub, Tino & Giannousakis, Anastasis & Hilaire, Jérôme, 2015. "Carbon leakage in a fragmented climate regime: The dynamic response of global energy markets," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 192-203.
    9. Ridha, Firas N. & Manovic, Vasilije & Macchi, Arturo & Anthony, Edward J., 2015. "CO2 capture at ambient temperature in a fixed bed with CaO-based sorbents," Applied Energy, Elsevier, vol. 140(C), pages 297-303.
    10. Frederick Ploeg, 2018. "The safe carbon budget," Climatic Change, Springer, vol. 147(1), pages 47-59, March.
    11. Rick Van der Ploeg & Armon Rezai, 2018. "Climate Policy and Stranded Carbon Assets: A Financial Perspective," OxCarre Working Papers 206, Oxford Centre for the Analysis of Resource Rich Economies, University of Oxford.
    12. Liobikienė, Genovaitė & Butkus, Mindaugas, 2017. "The European Union possibilities to achieve targets of Europe 2020 and Paris agreement climate policy," Renewable Energy, Elsevier, vol. 106(C), pages 298-309.
    13. Shimbar, A., 2021. "Environment-related stranded assets: An agenda for research into value destruction within carbon-intensive sectors in response to environmental concerns," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    14. Attahiru, Yusuf Babangida & Aziz, Md. Maniruzzaman A. & Kassim, Khairul Anuar & Shahid, Shamsuddin & Wan Abu Bakar, Wan Azelee & NSashruddin, Thanwa Filza & Rahman, Farahiyah Abdul & Ahamed, Mohd Imra, 2019. "A review on green economy and development of green roads and highways using carbon neutral materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 600-613.
    15. Laura Cornejo-Bueno & Lucas Cuadra & Silvia Jiménez-Fernández & Javier Acevedo-Rodríguez & Luis Prieto & Sancho Salcedo-Sanz, 2017. "Wind Power Ramp Events Prediction with Hybrid Machine Learning Regression Techniques and Reanalysis Data," Energies, MDPI, vol. 10(11), pages 1-27, November.
    16. Marcucci, Adriana & Fragkos, Panagiotis, 2015. "Drivers of regional decarbonization through 2100: A multi-model decomposition analysis," Energy Economics, Elsevier, vol. 51(C), pages 111-124.
    17. Paroussos, Leonidas & Fragkos, Panagiotis & Capros, Pantelis & Fragkiadakis, Kostas, 2015. "Assessment of carbon leakage through the industry channel: The EU perspective," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 204-219.
    18. Tan, Xiujie & Liu, Yu & Cui, Jingbo & Su, Bin, 2018. "Assessment of carbon leakage by channels: An approach combining CGE model and decomposition analysis," Energy Economics, Elsevier, vol. 74(C), pages 535-545.
    19. Griffin, Paul A. & Jaffe, Amy Myers & Lont, David H. & Dominguez-Faus, Rosa, 2015. "Science and the stock market: Investors' recognition of unburnable carbon," Energy Economics, Elsevier, vol. 52(PA), pages 1-12.
    20. Paul Lehmann & Jos Sijm & Erik Gawel & Sebastian Strunz & Unnada Chewpreecha & Jean-Francois Mercure & Hector Pollitt, 2019. "Addressing multiple externalities from electricity generation: a case for EU renewable energy policy beyond 2020?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 255-283, April.
    21. Kriegler, Elmar & Riahi, Keywan & Bauer, Nico & Schwanitz, Valeria Jana & Petermann, Nils & Bosetti, Valentina & Marcucci, Adriana & Otto, Sander & Paroussos, Leonidas & Rao, Shilpa & Arroyo Currás, T, 2015. "Making or breaking climate targets: The AMPERE study on staged accession scenarios for climate policy," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 24-44.
    22. Zhu, Lin & Cunningham, Scott W., 2022. "Unveiling the knowledge structure of technological forecasting and social change (1969–2020) through an NMF-based hierarchical topic model," Technological Forecasting and Social Change, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Xiujie & Liu, Yu & Cui, Jingbo & Su, Bin, 2018. "Assessment of carbon leakage by channels: An approach combining CGE model and decomposition analysis," Energy Economics, Elsevier, vol. 74(C), pages 535-545.
    2. Kriegler, Elmar & Riahi, Keywan & Bauer, Nico & Schwanitz, Valeria Jana & Petermann, Nils & Bosetti, Valentina & Marcucci, Adriana & Otto, Sander & Paroussos, Leonidas & Rao, Shilpa & Arroyo Currás, T, 2015. "Making or breaking climate targets: The AMPERE study on staged accession scenarios for climate policy," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 24-44.
    3. Krey, Volker & Guo, Fei & Kolp, Peter & Zhou, Wenji & Schaeffer, Roberto & Awasthy, Aayushi & Bertram, Christoph & de Boer, Harmen-Sytze & Fragkos, Panagiotis & Fujimori, Shinichiro & He, Chenmin & Iy, 2019. "Looking under the hood: A comparison of techno-economic assumptions across national and global integrated assessment models," Energy, Elsevier, vol. 172(C), pages 1254-1267.
    4. Guivarch, Céline & Monjon, Stéphanie, 2017. "Identifying the main uncertainty drivers of energy security in a low-carbon world: The case of Europe," Energy Economics, Elsevier, vol. 64(C), pages 530-541.
    5. Jakob, Michael, 2021. "Climate policy and international trade – A critical appraisal of the literature," Energy Policy, Elsevier, vol. 156(C).
    6. Johnson, Nils & Krey, Volker & McCollum, David L. & Rao, Shilpa & Riahi, Keywan & Rogelj, Joeri, 2015. "Stranded on a low-carbon planet: Implications of climate policy for the phase-out of coal-based power plants," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 89-102.
    7. Arroyo-Currás, Tabaré & Bauer, Nico & Kriegler, Elmar & Schwanitz, Valeria Jana & Luderer, Gunnar & Aboumahboub, Tino & Giannousakis, Anastasis & Hilaire, Jérôme, 2015. "Carbon leakage in a fragmented climate regime: The dynamic response of global energy markets," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 192-203.
    8. Schinko, Thomas & Bednar-Friedl, Birgit & Steininger, Karl W. & Grossmann, Wolf D., 2014. "Switching to carbon-free production processes: Implications for carbon leakage and border carbon adjustment," Energy Policy, Elsevier, vol. 67(C), pages 818-831.
    9. Bauer, Nico & Hilaire, Jérôme & Brecha, Robert J. & Edmonds, Jae & Jiang, Kejun & Kriegler, Elmar & Rogner, Hans-Holger & Sferra, Fabio, 2016. "Assessing global fossil fuel availability in a scenario framework," Energy, Elsevier, vol. 111(C), pages 580-592.
    10. Marcucci, Adriana & Fragkos, Panagiotis, 2015. "Drivers of regional decarbonization through 2100: A multi-model decomposition analysis," Energy Economics, Elsevier, vol. 51(C), pages 111-124.
    11. Halvor Briseid Storrøsten & Christoph Böhringer & Knut Einar Rosendahl, 2015. "Smart hedging against carbon leakage," Discussion Papers 822, Statistics Norway, Research Department.
    12. Valentina Bosetti & Enrica De Cian, 2013. "A Good Opening: The Key to Make the Most of Unilateral Climate Action," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(2), pages 255-276, October.
    13. Holladay, J. Scott & Mohsin, Mohammed & Pradhan, Shreekar, 2018. "Emissions leakage, environmental policy and trade frictions," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 95-113.
    14. Grischa Perino, 2015. "Climate Campaigns, Cap and Trade, and Carbon Leakage: Why Trying to Reduce Your Carbon Footprint Can Harm the Climate," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(3), pages 469-495.
    15. Böhringer, Christoph & Rosendahl, Knut Einar & Storrøsten, Halvor Briseid, 2017. "Robust policies to mitigate carbon leakage," Journal of Public Economics, Elsevier, vol. 149(C), pages 35-46.
    16. Pan, Wenqi & Kim, Man-Keun & Ning, Zhuo & Yang, Hongqiang, 2020. "Carbon leakage in energy/forest sectors and climate policy implications using meta-analysis," Forest Policy and Economics, Elsevier, vol. 115(C).
    17. Raihan, Selim, 2010. "Implications of the Global Economic Crisis for the Bangladesh Economy," Conference papers 331959, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    18. Riahi, Keywan & Kriegler, Elmar & Johnson, Nils & Bertram, Christoph & den Elzen, Michel & Eom, Jiyong & Schaeffer, Michiel & Edmonds, Jae & Isaac, Morna & Krey, Volker & Longden, Thomas & Luderer, Gu, 2015. "Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 8-23.
    19. Fais, Birgit & Sabio, Nagore & Strachan, Neil, 2016. "The critical role of the industrial sector in reaching long-term emission reduction, energy efficiency and renewable targets," Applied Energy, Elsevier, vol. 162(C), pages 699-712.
    20. Leibowicz, Benjamin D. & Krey, Volker & Grubler, Arnulf, 2016. "Representing spatial technology diffusion in an energy system optimization model," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 350-363.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01586814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.