IDEAS home Printed from https://ideas.repec.org/p/hal/ciredw/halshs-00464675.html
   My bibliography  Save this paper

Barriers to the adoption of renewable and energy-efficient technologies in the Vietnamese power sector

Author

Listed:
  • Nhan, T. Nguyen

    (CIRED - centre international de recherche sur l'environnement et le développement - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - EHESS - École des hautes études en sciences sociales - AgroParisTech - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique)

  • Minh Ha-Duong

    (CIRED - centre international de recherche sur l'environnement et le développement - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - EHESS - École des hautes études en sciences sociales - AgroParisTech - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique)

  • Thanh C. Tran

    (Institute of Energy of Vietnam - Institute of Energy of Vietnam, Department of Physics - The Royal Institute of Technology)

  • Ram M. Shrestha

    (Energy Program - AIT - Asian Institute of Technology [Pathumthani])

  • Franck Nadaud

    (CIRED - centre international de recherche sur l'environnement et le développement - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - EHESS - École des hautes études en sciences sociales - AgroParisTech - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique)

Abstract

This paper examines the major barriers to the deployment of geothermal, small hydro and advanced coal power generation technologies in Vietnam. It ranks their severity by applying the analytical hierarchy process to data from a survey of 37 domestic experts and stakeholders. Key barriers to a wider penetration of small hydro generation technologies are insufficient capital, a lack of domestic suppliers and unsatisfactory government policies. Barriers to geothermal power are related to information and awareness problems, a lack of R&D and industrial capability, a weak policy framework and the remoteness of geothermal sites. For advanced coal power technologies, the barriers are weak industrial capability, high cost and a lack of technical knowledge. The experts consulted in this study view changes in government actions as the key to overcoming the abovementioned barriers. They recommend investing more in R&D activities, improving R&D capacity through joint-venture schemes and reforming investment policy/legislation for the electric power industry as the most appropriate solutions.

Suggested Citation

  • Nhan, T. Nguyen & Minh Ha-Duong & Thanh C. Tran & Ram M. Shrestha & Franck Nadaud, 2010. "Barriers to the adoption of renewable and energy-efficient technologies in the Vietnamese power sector," CIRED Working Papers halshs-00464675, HAL.
  • Handle: RePEc:hal:ciredw:halshs-00464675
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00464675
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00464675/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nhan T. Nguyen & Minh Ha-Duong, 2009. "The potential for mitigation of CO2 emissions in Vietnam's power sector," Working Papers 22, Development and Policies Research Center (DEPOCEN), Vietnam.
    2. Madhu Khanna & David Zilberman, 1999. "Barriers to Energy-Efficiency in Electricity Generation in India," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-41.
    3. Wang, Hao & Nakata, Toshihiko, 2009. "Analysis of the market penetration of clean coal technologies and its impacts in China's electricity sector," Energy Policy, Elsevier, vol. 37(1), pages 338-351, January.
    4. Kavouridis, K. & Koukouzas, N., 2008. "Coal and sustainable energy supply challenges and barriers," Energy Policy, Elsevier, vol. 36(2), pages 693-703, February.
    5. Mirza, Umar K. & Ahmad, Nasir & Harijan, Khanji & Majeed, Tariq, 2009. "Identifying and addressing barriers to renewable energy development in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 927-931, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nhan Thanh Nguyen & Minh Ha-Duong & Sandra Greiner & Michael Mehling, 2011. "Implementing the Clean Development Mechanism in Vietnam: potential and limitations," Post-Print halshs-00654294, HAL.
    2. Pasakorn Sakolsatayatorn, 2019. "The Influence of Institutional Factors on Sustainable Renewable Energy Policy Development: New Evidence from the Thai Experience," International Journal of Global Sustainability, Macrothink Institute, vol. 3(1), pages 13-34, December.
    3. Luthra, Sunil & Kumar, Sanjay & Garg, Dixit & Haleem, Abid, 2015. "Barriers to renewable/sustainable energy technologies adoption: Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 762-776.
    4. Nguyen, Phuong Anh & Abbott, Malcolm & Nguyen, Thanh Loan T., 2019. "The development and cost of renewable energy resources in Vietnam," Utilities Policy, Elsevier, vol. 57(C), pages 59-66.
    5. Doorasamy Mishelle & Baldavaloo Kiran, 2016. "Compromising Long-Term Sustainability for Short-Term Profit Maximization: Unethical Business Practice," Foundations of Management, Sciendo, vol. 8(1), pages 79-92, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arshad, Muhammad & Bano, Ijaz & Khan, Nasrullah & Shahzad, Mirza Imran & Younus, Muhammad & Abbas, Mazhar & Iqbal, Munawar, 2018. "Electricity generation from biogas of poultry waste: An assessment of potential and feasibility in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1241-1246.
    2. Katarzyna Chudy-Laskowska & Tomasz Pisula, 2022. "An Analysis of the Use of Energy from Conventional Fossil Fuels and Green Renewable Energy in the Context of the European Union’s Planned Energy Transformation," Energies, MDPI, vol. 15(19), pages 1-23, October.
    3. Huang, Shih-Chieh & Lo, Shang-Lien & Lin, Yen-Ching, 2013. "Application of a fuzzy cognitive map based on a structural equation model for the identification of limitations to the development of wind power," Energy Policy, Elsevier, vol. 63(C), pages 851-861.
    4. Lindner, Soeren & Liu, Zhu & Guan, Dabo & Geng, Yong & Li, Xin, 2013. "CO2 emissions from China’s power sector at the provincial level: Consumption versus production perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 164-172.
    5. Maqbool, Rashid, 2018. "Efficiency and effectiveness of factors affecting renewable energy projects; an empirical perspective," Energy, Elsevier, vol. 158(C), pages 944-956.
    6. Asante, Dennis & He, Zheng & Adjei, Nana Osae & Asante, Bismark, 2020. "Exploring the barriers to renewable energy adoption utilising MULTIMOORA- EDAS method," Energy Policy, Elsevier, vol. 142(C).
    7. Mabroor Hassan & Manzoor K Afridi & Muhammad I Khan, 2018. "An overview of alternative and renewable energy governance, barriers, and opportunities in Pakistan," Energy & Environment, , vol. 29(2), pages 184-203, March.
    8. Shan Zhou & Douglas S. Noonan, 2019. "Justice Implications of Clean Energy Policies and Programs in the United States: A Theoretical and Empirical Exploration," Sustainability, MDPI, vol. 11(3), pages 1-20, February.
    9. Nhan Thanh Nguyen & Minh Ha-Duong & Sandra Greiner & Michael Mehling, 2011. "Implementing the Clean Development Mechanism in Vietnam: potential and limitations," Post-Print halshs-00654294, HAL.
    10. Li, Sisi & Khan, Sufyan Ullah & Yao, Yao & Chen, George S. & Zhang, Lin & Salim, Ruhul & Huo, Jiaying, 2022. "Estimating the long-run crude oil demand function of China: Some new evidence and policy options," Energy Policy, Elsevier, vol. 170(C).
    11. Hernández-Escobedo, Q. & Fernández-García, A. & Manzano-Agugliaro, F., 2017. "Solar resource assessment for rural electrification and industrial development in the Yucatan Peninsula (Mexico)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1550-1561.
    12. Suarez, Ronny, 2019. "A Monte Carlo Simulation Framework to Track Panama NDC Target," MPRA Paper 97022, University Library of Munich, Germany.
    13. Qureshi, Tahir Masood & Ullah, Kafait & Arentsen, Maarten J., 2017. "Factors responsible for solar PV adoption at household level: A case of Lahore, Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 754-763.
    14. Liu, Feng & Lyu, Tao & Pan, Li & Wang, Fei, 2017. "Influencing factors of public support for modern coal-fired power plant projects: An empirical study from China," Energy Policy, Elsevier, vol. 105(C), pages 398-406.
    15. Chuang, Ming Chih & Ma, Hwong Wen, 2013. "Energy security and improvements in the function of diversity indices—Taiwan energy supply structure case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 9-20.
    16. Yun, Na, 2023. "Nexus among carbon intensity and natural resources utilization on economic development: Econometric analysis from China," Resources Policy, Elsevier, vol. 83(C).
    17. Khanna, Madhu & Zilberman, David, 2001. "Adoption of energy efficient technologies and carbon abatement: the electricity generating sector in India," Energy Economics, Elsevier, vol. 23(6), pages 637-658, November.
    18. Alam, Syed Shah & Nik Hashim, Nik Hazrul & Rashid, Mamunur & Omar, Nor Asiah & Ahsan, Nilufar & Ismail, Md Daud, 2014. "Small-scale households renewable energy usage intention: Theoretical development and empirical settings," Renewable Energy, Elsevier, vol. 68(C), pages 255-263.
    19. Shih-Chieh Huang & Shang-Lien Lo & Yen-Ching Lin, 2013. "To Re-Explore the Causality between Barriers to Renewable Energy Development: A Case Study of Wind Energy," Energies, MDPI, vol. 6(9), pages 1-24, August.
    20. Jindal, Abhinav & Nilakantan, Rahul, 2021. "Falling efficiency levels of Indian coal-fired power plants: A slacks-based analysis," Energy Economics, Elsevier, vol. 93(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:ciredw:halshs-00464675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.