Advanced Search
MyIDEAS: Login to save this paper or follow this series

Propriétés en échantillon fini des tests robustes à l'hétéroscédasticité de forme inconnue

Contents:

Author Info

  • Emmanuel Flachaire

    ()
    (EUREQUA - Equipe Universitaire de Recherche en Economie Quantitative - CNRS : UMR8594 - Université Paris I - Panthéon-Sorbonne)

Abstract

Dans la pratique, la plupart des statistiques de test ont une distribution de probabilité de forme inconnue. Généralement, on utilise leur loi asymptotique comme approximation de la vraie loi. Mais, si l'échantillon dont on dispose n'est pas de taille suffisante cette approximation peut être de mauvaise qualité et les tests basés dessus largement biaisés. Les méthodes du bootstrap permettent d'obtenir une approximation de la vraie loi de la statistique en général plus précise que laloi asymptotique. Elles peuvent également servir àapproximer la loi d'une statistique qu'on ne peut pas calculer analytiquement. Dans cet article, nous présentons une méthodologie générale du bootstrap dans le contexte des modèles de régression.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://halshs.archives-ouvertes.fr/docs/00/17/59/05/PDF/Flachaire_03b_short.pdf
Download Restriction: no

Bibliographic Info

Paper provided by HAL in its series Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) with number halshs-00175905.

as in new window
Length:
Date of creation: 2005
Date of revision:
Publication status: Published, Annales d'Economie et Statistiques, 2005, 77, 187-199
Handle: RePEc:hal:cesptp:halshs-00175905

Note: View the original document on HAL open archive server: http://halshs.archives-ouvertes.fr/halshs-00175905
Contact details of provider:
Web page: http://hal.archives-ouvertes.fr/

Related research

Keywords: bootstrap; modèles de régression;

Other versions of this item:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Davidson, R. & Mackinnon, J.G., 1996. "The Size Distorsion of Bootstrap Tests," G.R.E.Q.A.M. 96a15, Universite Aix-Marseille III.
  2. Davidson, Russell & Flachaire, Emmanuel, 2008. "The wild bootstrap, tamed at last," Journal of Econometrics, Elsevier, vol. 146(1), pages 162-169, September.
  3. MacKinnon, James G. & White, Halbert, 1985. "Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties," Journal of Econometrics, Elsevier, vol. 29(3), pages 305-325, September.
  4. Chesher, Andrew & Jewitt, Ian, 1987. "The Bias of a Heteroskedasticity Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 55(5), pages 1217-22, September.
  5. van Giersbergen, Noud P. A. & Kiviet, Jan F., 2002. "How to implement the bootstrap in static or stable dynamic regression models: test statistic versus confidence region approach," Journal of Econometrics, Elsevier, vol. 108(1), pages 133-156, May.
  6. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-38, May.
  7. James G. MacKinnon, 2002. "Bootstrap inference in econometrics," Canadian Journal of Economics, Canadian Economics Association, vol. 35(4), pages 615-645, November.
  8. Joel L. Horowitz, 1996. "Bootstrap Methods in Econometrics: Theory and Numerical Performance," Econometrics 9602009, EconWPA, revised 05 Mar 1996.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:halshs-00175905. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.