Advanced Search
MyIDEAS: Login to save this paper or follow this series

On optimal growth models when the discount factor is near 1 or equal to 1

Contents:

Author Info

  • Cuong Le Van

    ()
    (CES - Centre d'économie de la Sorbonne - CNRS : UMR8174 - Université Paris I - Panthéon-Sorbonne)

  • Lisa Morhaim

    (CES - Centre d'économie de la Sorbonne - CNRS : UMR8174 - Université Paris I - Panthéon-Sorbonne)

Abstract

The aim of this paper is to fill the gap between intertemporal growth models when the discount factor beta is close to one and when it equals one.We show that the value function and the policy function are continuous with respect both to the discount factor and the initial stock of capitalx0. We prove that the optimal policy g(x0) is differentiable and that Dg(x0) is continuous with respect to (beta, x0). As a by-product, a globalturnpike result is proved.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://halshs.archives-ouvertes.fr/docs/00/09/60/34/PDF/betaIJETdec.pdf
Download Restriction: no

Bibliographic Info

Paper provided by HAL in its series Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) with number halshs-00096034.

as in new window
Length:
Date of creation: Mar 2006
Date of revision:
Publication status: Published, International Journal of Economic Theory, 2006, 2, 1, 55-76
Handle: RePEc:hal:cesptp:halshs-00096034

Note: View the original document on HAL open archive server: http://halshs.archives-ouvertes.fr/halshs-00096034
Contact details of provider:
Web page: http://hal.archives-ouvertes.fr/

Related research

Keywords: Optimal growth; discount factor; value function; policy function; differentiability; turnpike.;

Other versions of this item:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Montrucchio, Luigi, 1987. "Lipschitz continuous policy functions for strongly concave optimization problems," Journal of Mathematical Economics, Elsevier, vol. 16(3), pages 259-273, June.
  2. Araujo, A, 1991. "The Once but Not Twice Differentiability of the Policy Function," Econometrica, Econometric Society, vol. 59(5), pages 1383-93, September.
  3. Venditti, A., 1995. "Strong Concavity Properties of Direct Utility Functions in Multisector Optimal Growth Models," G.R.E.Q.A.M. 95a31, Universite Aix-Marseille III.
  4. Araujo, A & Scheinkman, Jose A, 1977. "Smoothness, Comparative Dynamics, and the Turnpike Property," Econometrica, Econometric Society, vol. 45(3), pages 601-20, April.
  5. Montrucchio, Luigi, 1998. "Thompson metric, contraction property and differentiability of policy functions," Journal of Economic Behavior & Organization, Elsevier, vol. 33(3-4), pages 449-466, January.
  6. Makoto Yano, 1998. "On the Dual Stability of a von Neumann Facet and the Inefficacy of Temporary Fiscal Policy," Econometrica, Econometric Society, vol. 66(2), pages 427-452, March.
  7. McKenzie, Lionel W., 2005. "Optimal economic growth, turnpike theorems and comparative dynamics," Handbook of Mathematical Economics, in: K. J. Arrow & M.D. Intriligator (ed.), Handbook of Mathematical Economics, edition 2, volume 3, chapter 26, pages 1281-1355 Elsevier.
  8. Santos, Manuel S., 1994. "Smooth dynamics and computation in models of economic growth," Journal of Economic Dynamics and Control, Elsevier, vol. 18(3-4), pages 879-895.
  9. Santos, Manuel S, 1991. "Smoothness of the Policy Function in Discrete Time Economic Models," Econometrica, Econometric Society, vol. 59(5), pages 1365-82, September.
  10. Santos, M.S., 1989. "Differentiability And Comparative Analysis In Discrete-Time Infinite-Horizon Optimization Problems," UFAE and IAE Working Papers 127-89, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
  11. Alexandre Scheinkman, Jose, 1976. "On optimal steady states of n-sector growth models when utility is discounted," Journal of Economic Theory, Elsevier, vol. 12(1), pages 11-30, February.
  12. Manuel S. Santos & Jesus Vigo-Aguiar, 1998. "Analysis of a Numerical Dynamic Programming Algorithm Applied to Economic Models," Econometrica, Econometric Society, vol. 66(2), pages 409-426, March.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Emmanuel Thibault, 2008. "Dynamic efficiency and intergenerational altruism," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 11(3), pages 679-687, July.
  2. Vassili Kolokoltsov & Wei Yang, 2012. "Turnpike Theorems for Markov Games," Dynamic Games and Applications, Springer, vol. 2(3), pages 294-312, September.
  3. Dapeng CAI & Takashi Gyoshin NITTA, 2008. "Limit of the Solutions for the Finite Horizon Problems as the Optimal Solution to the Infinite Horizon Optimization Problems," Papers 0803.4050, arXiv.org.
  4. Dapeng CAI & Takashi Gyoshin NITTA, 2008. "Constructing the Optimal Solutions to the Undiscounted Continuous-Time Infinite Horizon Optimization Problems," Papers 0803.4046, arXiv.org.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:halshs-00096034. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.