IDEAS home Printed from https://ideas.repec.org/p/hal/cepnwp/hal-01730050.html
   My bibliography  Save this paper

Negative Binomial Autoregressive Process

Author

Listed:
  • Yang Lu

    (CEPN - Centre d'Economie de l'Université Paris Nord - UP13 - Université Paris 13 - USPC - Université Sorbonne Paris Cité - CNRS - Centre National de la Recherche Scientifique)

  • Christian Gourieroux

    (University of Toronto, TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - INRA - Institut National de la Recherche Agronomique - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique)

Abstract

We introduce Negative Binomial Autoregressive (NBAR) processes for (univariate and bivariate) count time series. The univariate NBAR process is defined jointly with an underlying intensity process, which is autoregressive gamma. The resulting count process is Markov, with negative binomial conditional and marginal distributions. The process is then extended to the bivariate case with a Wishart autoregressive matrix intensity process. The NBAR processes are Compound Autoregressive, which allows for simple stationarity condition and quasi-closed form nonlinear forecasting formulas at any horizon, as well as a computationally tractable generalized method of moment estimator. The model is applied to a pairwise analysis of weekly occurrence counts of a contagious disease between the greater Paris region and other French regions.

Suggested Citation

  • Yang Lu & Christian Gourieroux, 2018. "Negative Binomial Autoregressive Process," CEPN Working Papers hal-01730050, HAL.
  • Handle: RePEc:hal:cepnwp:hal-01730050
    Note: View the original document on HAL open archive server: https://hal.science/hal-01730050
    as

    Download full text from publisher

    File URL: https://hal.science/hal-01730050/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Heinen, Andreas & Rengifo, Erick, 2007. "Multivariate autoregressive modeling of time series count data using copulas," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 564-583, September.
    2. Bockenholt, Ulf, 1998. "Mixed INAR(1) Poisson regression models: Analyzing heterogeneity and serial dependencies in longitudinal count data," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 317-338, November.
    3. Gourieroux, C. & Jasiak, J., 2004. "Heterogeneous INAR(1) model with application to car insurance," Insurance: Mathematics and Economics, Elsevier, vol. 34(2), pages 177-192, April.
    4. Joann Jasiak & Christian Gourieroux, 2006. "Autoregressive gamma processes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(2), pages 129-152.
    5. Serge Darolles & Christian Gourieroux & Joann Jasiak, 2006. "Structural Laplace Transform and Compound Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(4), pages 477-503, July.
    6. Richard Blundell & Rachel Griffith & John van Reenen, 1999. "Market Share, Market Value and Innovation in a Panel of British Manufacturing Firms," Review of Economic Studies, Oxford University Press, vol. 66(3), pages 529-554.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Lu & Christian Gourieroux, 2018. "Negative Binomial Autoregressive Process," Working Papers hal-01730050, HAL.
    2. Darolles, Serge & Fol, Gaëlle Le & Lu, Yang & Sun, Ran, 2019. "Bivariate integer-autoregressive process with an application to mutual fund flows," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 181-203.
    3. Yang Lu, 2021. "The predictive distributions of thinning‐based count processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 42-67, March.
    4. Yang Lu, 2018. "Dynamic Frailty Count Process in Insurance: A Unified Framework for Estimation, Pricing, and Forecasting," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 85(4), pages 1083-1102, December.
    5. Gagliardini, Patrick & Gouriéroux, Christian, 2013. "Correlated risks vs contagion in stochastic transition models," Journal of Economic Dynamics and Control, Elsevier, vol. 37(11), pages 2241-2269.
    6. Patrick Gagliardini & Christian Gouriéroux, 2011. "Approximate Derivative Pricing for Large Classes of Homogeneous Assets with Systematic Risk," The Journal of Financial Econometrics, Society for Financial Econometrics, vol. 9(2), pages 237-280, Spring.
    7. H. Bertholon & A. Monfort & F. Pegoraro, 2008. "Econometric Asset Pricing Modelling," The Journal of Financial Econometrics, Society for Financial Econometrics, vol. 6(4), pages 407-458, Fall.
    8. Matteo Iacopini & Carlo R.M.A. Santagiustina, 2021. "Filtering the intensity of public concern from social media count data with jumps," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1283-1302, October.
    9. Gourieroux, Christian & Sufana, Razvan, 2011. "Discrete time Wishart term structure models," Journal of Economic Dynamics and Control, Elsevier, vol. 35(6), pages 815-824, June.
    10. Bruno Feunou & Roméo Tédongap, 2012. "A Stochastic Volatility Model With Conditional Skewness," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 576-591, July.
    11. Gouriéroux, C. & Monfort, A. & Renne, J.P., 2014. "Pricing default events: Surprise, exogeneity and contagion," Journal of Econometrics, Elsevier, vol. 182(2), pages 397-411.
    12. Serge Darolles & Patrick Gagliardini & Christian Gouriéroux, 2012. "Survival of Hedge Funds : Frailty vs Contagion," Working Papers 2012-36, Center for Research in Economics and Statistics.
    13. Han, Hyojin & Khrapov, Stanislav & Renault, Eric, 2020. "The leverage effect puzzle revisited: Identification in discrete time," Journal of Econometrics, Elsevier, vol. 217(2), pages 230-258.
    14. Timothy M. Christensen, 2014. "Nonparametric identification of positive eigenfunctions," CeMMAP working papers 37/14, Institute for Fiscal Studies.
    15. Gagliardini, Patrick & Gouriéroux, Christian, 2019. "Identification by Laplace transforms in nonlinear time series and panel models with unobserved stochastic dynamic effects," Journal of Econometrics, Elsevier, vol. 208(2), pages 613-637.
    16. Dario Alitab & Giacomo Bormetti & Fulvio Corsi & Adam A. Majewski, 2019. "A realized volatility approach to option pricing with continuous and jump variance components," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 639-664, December.
    17. Michael Gallmeyer & Burton Hollifield & Francisco Palomino & Stanley Zin, 2017. "Term Premium Dynamics and the Taylor Rule," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 7(04), pages 1-39, December.
    18. Monfort, Alain & Pegoraro, Fulvio & Renne, Jean-Paul & Roussellet, Guillaume, 2017. "Staying at zero with affine processes: An application to term structure modelling," Journal of Econometrics, Elsevier, vol. 201(2), pages 348-366.
    19. Alain Monfort & Fulvio Pegoraro, 2007. "Switching VARMA Term Structure Models - Extended Version," Working Papers 2007-19, Center for Research in Economics and Statistics.
    20. Timothy M. Christensen, 2014. "Nonparametric identification of positive eigenfunctions," CeMMAP working papers CWP37/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

    More about this item

    Keywords

    Compound Autoregressive; Poisson-gamma conjugacy;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:cepnwp:hal-01730050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.