Advanced Search
MyIDEAS: Login

Modelling Stock Market Excess Returns by Markov Modulated Gaussian Noise

Contents:

Author Info

  • Jonathan Manton
  • Anton Muscatelli
  • Vikram Krishnamurthy
  • Stan Hurn

Abstract

A basic analysis of stock market excess return data shows both linear and non-linear dependence present. Previous papers have used this to argue that it must therefore be possible to predict future values. However, this paper shows that the linear and non-linear dependence can be explained by simply allowing the mean and variance of Gaussian noise to be modulated by a (typically 3 state) hidden Markov model. Attempting to fit a Markov modulated AR process proved fruitless; the conclusion is that there is no AR-predictability present in excess return data.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.gla.ac.uk/media/media_219045_en.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Business School - Economics, University of Glasgow in its series Working Papers with number 9806.

as in new window
Length:
Date of creation:
Date of revision:
Handle: RePEc:gla:glaewp:9806

Contact details of provider:
Postal: Adam Smith Building, Glasgow G12 8RT
Phone: 0141 330 4618
Fax: 0141 330 4940
Web page: http://www.gla.ac.uk/schools/business/research/
More information through EDIRC

Related research

Keywords:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Engle, Robert F. & Mustafa, Chowdhury, 1992. "Implied ARCH models from options prices," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 289-311.
  2. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-84, March.
  3. Poterba, James M. & Summers, Lawrence H., 1988. "Mean reversion in stock prices : Evidence and Implications," Journal of Financial Economics, Elsevier, vol. 22(1), pages 27-59, October.
  4. Culter, D.M. & Poterba, J.M. & Summers, L.H., 1990. "Speculative Dynamics," Working papers 544, Massachusetts Institute of Technology (MIT), Department of Economics.
  5. Hentschel, Ludger & Campbell, John, 1992. "No News is Good News: An Asymmetric Model of Changing Volatility in Stock Returns," Scholarly Articles 3220232, Harvard University Department of Economics.
  6. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
  7. Andrew W. Lo, 1989. "Long-term Memory in Stock Market Prices," NBER Working Papers 2984, National Bureau of Economic Research, Inc.
  8. Crato, Nuno & de Lima, Pedro J. F., 1994. "Long-range dependence in the conditional variance of stock returns," Economics Letters, Elsevier, vol. 45(3), pages 281-285.
  9. Gallant, A Ronald & Rossi, Peter E & Tauchen, George, 1992. "Stock Prices and Volume," Review of Financial Studies, Society for Financial Studies, vol. 5(2), pages 199-242.
  10. Sentana, Enrique & Wadhwani, Sushil, 1991. "Semi-parametric Estimation and the Predictability of Stock Market Returns: Some Lessons from Japan," Review of Economic Studies, Wiley Blackwell, vol. 58(3), pages 547-63, May.
  11. Fama, Eugene F & French, Kenneth R, 1988. "Permanent and Temporary Components of Stock Prices," Journal of Political Economy, University of Chicago Press, vol. 96(2), pages 246-73, April.
  12. Gallant, A.R. & Hsieh, D. & Tauchen, G., 1988. "On Fitting A Recalcitrant Series: The Pound/Dollar Exchange Rate, 1974- 83," Papers 88-60, Chicago - Graduate School of Business.
  13. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
  14. Harvey, Andrew & Ruiz, Esther & Shephard, Neil, 1994. "Multivariate Stochastic Variance Models," Review of Economic Studies, Wiley Blackwell, vol. 61(2), pages 247-64, April.
  15. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
  16. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:gla:glaewp:9806. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Jeanette Findlay).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.