Advanced Search
MyIDEAS: Login

Data-based priors for vector autoregressions with drifting coefficients

Contents:

Author Info

  • Dimitris Korobilis

Abstract

This paper proposes full-Bayes priors for time-varying parameter vector autoregressions (TVP-VARs) which are more robust and objective than existing choices proposed in the literature. We formulate the priors in a way that they allow for straightforward posterior computation, they require minimal input by the user, and they result in shrinkage posterior representations, thus, making them appropriate for models of large dimensions. A comprehensive forecasting exercise involving TVP-VARs of different dimensions establishes the usefulness of the proposed approach.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.gla.ac.uk/media/media_308311_en.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Business School - Economics, University of Glasgow in its series Working Papers with number 2014_04.

as in new window
Length:
Date of creation: Jan 2014
Date of revision:
Handle: RePEc:gla:glaewp:2014_04

Contact details of provider:
Postal: Adam Smith Building, Glasgow G12 8RT
Phone: 0141 330 4618
Fax: 0141 330 4940
Web page: http://www.gla.ac.uk/schools/business/research/
More information through EDIRC

Related research

Keywords: TVP-VAR; shrinkage; data-based prior; forecasting;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Miguel Belmonte & Gary Koop & Dimitris Korobilis, 2011. "Hierarchical Shrinkage in Time-Varying Parameter Models," Working Papers 1137, University of Strathclyde Business School, Department of Economics.
  2. D'Agostino, Antonello & Gambetti, Luca & Giannone, Domenico & Giannone, Domenico, 2009. "Macroeconomic Forecasting and Structural Change," Research Technical Papers 8/RT/09, Central Bank of Ireland.
  3. A. Bhattacharya & D. B. Dunson, 2011. "Sparse Bayesian infinite factor models," Biometrika, Biometrika Trust, vol. 98(2), pages 291-306.
  4. Gary Koop & Dimitris Korobilis, 2012. "Large Time-Varying Parameter VARs," Working Paper Series 11_12, The Rimini Centre for Economic Analysis.
  5. Dimitris Korobilis, 2012. "Bayesian forecasting with highly correlated predictors," Working Papers 2012_12, Business School - Economics, University of Glasgow.
  6. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2012. "Prior Selection for Vector Autoregressions," NBER Working Papers 18467, National Bureau of Economic Research, Inc.
  7. Koop, Gary & Korobilis, Dimitris, 2009. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," MPRA Paper 20125, University Library of Munich, Germany.
  8. KOROBILIS, Dimitris, 2011. "VAR forecasting using Bayesian variable selection," CORE Discussion Papers 2011022, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  9. Korobilis, Dimitris, 2013. "Hierarchical shrinkage priors for dynamic regressions with many predictors," International Journal of Forecasting, Elsevier, vol. 29(1), pages 43-59.
  10. Eric Eisenstat & Joshua C.C. Chan & Rodney W. Strachan, 2014. "Stochastic Model Specification Search for Time-Varying Parameter VARs," CAMA Working Papers 2014-23, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
  11. Frühwirth-Schnatter, Sylvia & Wagner, Helga, 2010. "Stochastic model specification search for Gaussian and partial non-Gaussian state space models," Journal of Econometrics, Elsevier, vol. 154(1), pages 85-100, January.
  12. Bouriga, Mathilde & Féron, Olivier, 2013. "Estimation of covariance matrices based on hierarchical inverse-Wishart priors," Economics Papers from University Paris Dauphine 123456789/11431, Paris Dauphine University.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:gla:glaewp:2014_04. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Jeanette Findlay).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.